Advertisement

A Systematic First-Principles Investigation of Structural, Electronic, Magnetic, and Thermoelectric Properties of Thorium Monopnictides ThPn (Pn = N, P, As): A Comparative Analysis of Theoretical Predictions of LDA, PBEsol, PBE-GGA, WC-GGA, and LDA + U Methods

  • Muhammad Siddique
  • Amin Ur Rahman
  • Azmat IqbalEmail author
  • Bakhtiar Ul Haq
  • Sikander Azam
  • Asif Nadeem
  • Abdul Qayyum
Article
  • 46 Downloads

Abstract

Thorium pnictides, besides their simple electronic structure, have been in the spotlight because of unique mechanical, electronic, and thermal properties. In this paper, we report on the first-principles calculations of structural, electronic, magnetic, and thermoelectric properties of thorium monopnictides ThPn (Pn =N, P, As) within density-functional-theory (DFT) formalism under ambient conditions. The equilibrium lattice parameters and bulk moduli are computed by fitting the total energy of the unit cell at various volumes into the Murnaghan’s equation of state. To compute the structural properties, we have employed all-electron full-potential linearized augmented plane wave plus local orbits (FP-LAPW + lo) method by treating exchange–correlation energy terms within local density approximation (LDA) and spin-polarized density approximation (LSDA). Moreover, a comparative analysis of DFT predictions on electronic structure is made with Wu–Cohen (WC) and Perdew–Burke–Ernzerhof (PBE) corrections to GGA as well as newly introduced PBEsol energy exchange–correlation functionals. For the electronic band structures, total and partial density of states, and magnetic moments of the compounds, however, we have implemented first time the LDA + U method to account for the possible strong correlation effects arising from the 5f electrons of Th atoms. On the other hand, Boltzmann transport theory is executed within relaxation time approximation, for the first-time reported thermoelectric properties of the compounds. Although the monopnictides have shown large values of thermoelectric power factor of the order of 1012 Wm−1·K−2·s−1, however, simultaneous higher values of thermal conductivity of the order of 1016 Wm−1·K−1·s−1 render them with lower values of thermoelectric efficiency. The small spin magnetic moments confirm the non-magnetic character of the monopnictides. The obtained results have been compared with the earlier theoretical and experimental studies.

Keywords

Boltzman transport theory Density-functional-theory Spin magnetic moment Thermoelectric figure of merit Thermoelectric power factor Thermoelectric properties Thorium monopnictides 

Notes

References

  1. 1.
    H. Baaziz et al., Int. J. Mod. Phys. B 31, 1750226 (2017)ADSGoogle Scholar
  2. 2.
    S. Cotton, Lanthanides and Actinides Chemistry (John Wiley and Sons, England, 2006)Google Scholar
  3. 3.
    K.O. Obodo, N.N. Chetty, J. Nucl. Mater. 442, 235 (2013)ADSGoogle Scholar
  4. 4.
    A. Claisse et al., J. Nucl. Mater. (2014).  https://doi.org/10.1016/j.jnucmat.2016.06.007 CrossRefGoogle Scholar
  5. 5.
    L. Peters et al., Phys. Rev. B 89, 205109 (2014)ADSGoogle Scholar
  6. 6.
    I.R. Shein, A.L. Ivanovskii, Solid State Sci. 12, 2106 (2010)ADSGoogle Scholar
  7. 7.
    Y. Lu et al., J. Nucl. Mater. 408, 36 (2011)Google Scholar
  8. 8.
    V. Kanchana e al., J. Phys. Condens. Matter 18, 9615 (2006)Google Scholar
  9. 9.
    S. Kumar, S. Auluck, Bull. Matter. Sci. 26, 165 (2003)Google Scholar
  10. 10.
    S. Amari et al., J. Nucl. Matter. 454, 186 (2014)ADSGoogle Scholar
  11. 11.
    S. Kapoor, N. Yaduvanshi, S. Singh, Mol. Phys. (2016).  https://doi.org/10.1080/00268976.2016.1250964 CrossRefGoogle Scholar
  12. 12.
    L. Gerward et al., High Pressure Res. 1, 235 (1989)ADSGoogle Scholar
  13. 13.
    Gerward et al., J. Appl. Cryst. 18, 339 (1985)Google Scholar
  14. 14.
    V. Kanchana et al., Acta Cryst. B70, 459 (2014)Google Scholar
  15. 15.
    A. Aid et al., Advances in Condensed Matter Physics, ed. by A. Hussain Reshak (Research Signpost, Thiruvananthapuram, 2009)Google Scholar
  16. 16.
    J.S. Olsen et al., J. Appl. Cryst. 22, 61 (1989)Google Scholar
  17. 17.
    Gerward et al., High Temp. High Pressure 20, 545 (1988)Google Scholar
  18. 18.
    M. Siddique et al., Comput. Condensed Matter 13, 111 (2017)Google Scholar
  19. 19.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)ADSGoogle Scholar
  20. 20.
    J.P. Perdew, W. Yue, Phy. Rev. B 33, 8800–8802 (1986)ADSGoogle Scholar
  21. 21.
    Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006)ADSGoogle Scholar
  22. 22.
    J.P. Perdew et al., Phys. Rev. Lett. 77, 3865 (1996)ADSGoogle Scholar
  23. 23.
    J.P. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008)ADSGoogle Scholar
  24. 24.
    P. Blaha et al., Wien2k, An Augunented Plane Wave Plus Local Orbital Programme for calculating crystal properties (Vienna University of Technology, Austeria, 2001)Google Scholar
  25. 25.
    D.R. Hamann, Phys. Rev. Lett. 212, 662 (1979)ADSGoogle Scholar
  26. 26.
    F.D. Muranghan, Proc-Natl. Acad. Sci. USA 30, 5390 (1994)Google Scholar
  27. 27.
    H. Kitamura, Eur. J. Phys. 36, 065010 (2015)Google Scholar
  28. 28.
    T.J. Scheidemantel et al., Phys. Rev. B 68, 125210 (2003)ADSGoogle Scholar
  29. 29.
    G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)ADSGoogle Scholar
  30. 30.
    V. Srivastava, S.P. Sanyal, J. Alloy. Compd. 366, 15 (2004)Google Scholar
  31. 31.
    N. Charles, J.M. Rondinelli, Phys. Rev. B 94, 174108 (2016)ADSGoogle Scholar
  32. 32.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSGoogle Scholar
  33. 33.
    J. Hubbard, Proc. Roy. Soc. Lond. A 296, 100 (1996)ADSGoogle Scholar
  34. 34.
    F.A. Kassan Ogly et al., Phys. Metals Metallogr. 114, 1155 (2013)ADSGoogle Scholar
  35. 35.
    F. Bultmark et al., Phys. Rev. B 80, 035121 (2009)ADSGoogle Scholar
  36. 36.
    J.T. Pegg et al., J. Nucl. Mater. 492, 269 (2017)ADSGoogle Scholar
  37. 37.
    H. H. Hill, Plutonium 1970 and other actinides, ed. by W.N. Miner (The metallurgical Society of the AIME, New York, 1970)Google Scholar
  38. 38.
    C. Han et al., Adv. Energy Mater. 6, 1600498 (2016)Google Scholar
  39. 39.
    H. Fu et al., Comput. Matter. Sci. 44, 774 (2008)Google Scholar
  40. 40.
    R.B. Behram et al., Mater. Sci. Semicond. Proces. 41, 297 (2016)Google Scholar
  41. 41.
    A. Bentauf et al., J. Elect. Mater. 46, 130 (2017)ADSGoogle Scholar
  42. 42.
    B. Khan et al., Comput. Phys. Commun. 187, 1 (2015)ADSGoogle Scholar
  43. 43.
    H.A.R. Aliabad et al., J. Alloys Compd. 38669, 32546 (2016)Google Scholar
  44. 44.
    T.M. Tritt, Thermal Conductivity; Theory, Properties and Applications (Kluwer Academic/PLENUM Publishers, New York, 2004)Google Scholar
  45. 45.
    T.M. Tritt, Science 283, 804 (1999)Google Scholar
  46. 46.
    C.J. Liv, A.A. Bhaskar, J.J. Yuan, Appl. Phys. Lett. 98, 214101 (2011)ADSGoogle Scholar
  47. 47.
    P.B. Allen (Boltzman Theory and resistivity of metals (ed. by J.R. Chelikowsky, S.G. Louie) (Boston, Kluwaer, 1996), pp. 219–250Google Scholar
  48. 48.
    Z. Tian, S. Lee, G. Chen G, https://arxiv.org/abs/1401.0749
  49. 49.
    A. Bulusu, D.G. Walker, Superlattices Microstruct. 44, 1 (2008)ADSGoogle Scholar
  50. 50.
    R. Iqbal et al., Int. J. Mod. Phys. B 31, 1850004 (2017)MathSciNetGoogle Scholar
  51. 51.
    C. Han et al., Adv. Energy Mater. 6(15), 1600498-1–1600498-36 (2016)Google Scholar
  52. 52.
    J. Zhang et al., Sci. Rep. 4, 6452 (2014)Google Scholar
  53. 53.
    J. Wang et al., Sci. Rep. 7, 41418 (2017)ADSGoogle Scholar
  54. 54.
    M. Bilal et al., Comput. Phys. Commun. 185, 1394 (2014)ADSGoogle Scholar
  55. 55.
    G. Ding, G. Gao, K. Yao, Sci. Rep. 5, 9567 (2015)ADSGoogle Scholar
  56. 56.
    J.L. Izquierdo, G. Bolanos, O. Moran, J. Alloy. Compd. 652, 292 (2015)Google Scholar
  57. 57.
    X. Lu et al., Chem. Matter. 27, 408 (2015)Google Scholar
  58. 58.
    A. Inagaya et al., J. App. Phys. 110, 123712 (2011)ADSGoogle Scholar
  59. 59.
    R. Kabir et al., Phys. Status Solidi A 211, 1200 (2014)ADSGoogle Scholar
  60. 60.
    C. Liv et al., J. Electron. Mater. 43, 2094 (2014)ADSGoogle Scholar
  61. 61.
    G.S. Noless, J. Appl. Phys. 79, 4002 (1996)ADSGoogle Scholar
  62. 62.
    T. Kimura, Nature 426, 55 (2003)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe University Of LahoreLahorePakistan
  2. 2.Department of Physics, Faculty of Engineering and Applied SciencesRIPHAH International UniversityIslamabadPakistan
  3. 3.Department of PhysicsKing Khalid UniversityAbhaKingdom of Saudi Arabia
  4. 4.Department of PhysicsUniversity of Management and TechnologyLahorePakistan

Personalised recommendations