Advertisement

Intercomparison of Thermophysical Property Measurements on Iron and Steels

  • Hans-Peter EbertEmail author
  • Stephan Braxmeier
  • Diana Neubert
Article
  • 7 Downloads

Abstract

The German Thermophysics Working Group (AKT) within the Society for Thermal Analysis (GEFTA) initiated and conducted an intercomparison with the objective of the determination of the thermophysical properties of pure iron, an interstitial-free steel, and a multi-phase steel. The values of heat capacity, thermal diffusivity, thermal expansion, and thermal conductivity were measured from 20 °C up to 1000 °C. In all cases, a mean value could be derived. In the case of pure iron, the mean values are in good agreement with the literature values. For the values of the thermal expansion coefficient and thermal diffusivity, the relative uncertainties are below 4 %. The relative uncertainties for the specific heat are between 4 % and 5 % up to 600 °C. Above this temperature, the uncertainty is in the range from 6 % to 8 %. The relative uncertainty of the thermal conductivity values is about 6 % below 600 °C and up to 9 % above.

Keywords

IF (interstitial-free) steel Intercomparison Linear expansion coefficient Multi-phase steel Pure iron Specific heat Thermal conductivity Thermal diffusivity 

List of Symbols

a

Thermal diffusivity, m2·s−1

cp

Specific heat, J·kg−1K−1

e

Specific extinction coefficient, m2·kg−1

E

Normalized deviation, 1

L

Length, m

T

Temperature, K, °C

U

Uncertainty, depends

x

Measurement value, depends

Greek symbols

α

Coefficient of thermal expansion, K−1

λ

Thermal conductivity, W·m−1K−1

ρ

Density, kg·m−3

Subscripts

p

Constant pressure

lab

Experimentally determined value

mean

Mean value

n

Normalized

Abbreviations

CIPM

Comité International des Poids et Mesures

CTE

Linear thermal expansion coefficient

DSC

Differential scanning calorimeter

GEFTA

Society for Thermal Analysis

GUM

Guide to the Expression of Uncertainty in Measurement

ICP-OES

Coupled Plasma Optical Emission Spectrometry

IF

Interstitial free

LVDT

Linear variable differential transformer

MP

Multi-phase

STA

Simultaneous thermal analysis

Notes

Acknowledgements

The authors thank all participants in the intercomparison for their valuable contributions, namely W. Hohenauer (AIT), K. Stanelle and A. Eppner (IAB), T. Gestrich, A. Kaiser (IKTS), G. Seifert and J. Barber (ISC), A. Lindemann (Netzsch), E. Kaschnitz (ÖGI), T. Knoche and R. Küppers (RWTH), B. Tartler (SGL Carbon), R. Wulf (IWTT), F. Hemberger and A. Göbel (ZAE Bayern). Special thanks to the company thyssenkrupp Steel Europe AG for the provision of more than 420 specimens.

References

  1. 1.
    J. Bojkovski et al., A roadmap for thermal metrology. Int. J. Thermophys. 30, 8 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    L. Binkele, Austenitic Chromium Nickel Steel as Standard Reference Material in Measurement of Thermal and Temperature Conductivity (Butterworth-Heinemann, Waltham, 1990)Google Scholar
  3. 3.
    S. Rudtsch et al., Intercomparison of thermophysical property measurements on an austenitic stainless steel. Int. J. Thermophys. 26, 855–867 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Y.S. Touloukian et al., Thermal Conductivity: Metallic Elements and Alloys. Thermophysical Properties of Matter, v. 1 (IFI/Plenum, New York, 1970)CrossRefGoogle Scholar
  5. 5.
    D.C. Wallace, P.H. Sidles, G.G. Danielson, Specific heat of high purity iron by a pulse heating method. J. Appl. Phys. 31, 8 (1960)CrossRefGoogle Scholar
  6. 6.
    I. Maglic, A. Cezairliyan, V.E. Peletsky, Compendium of Thermophysical Property Measurement Methods: Volume 2 Recommended Measurement Techniques and Practices (Plenum Press, New York, 1992)CrossRefGoogle Scholar
  7. 7.
    K. Shinzato, T. Baba, A laser flash apparatus for thermal diffusivity and specific heat capacity measurements. J. Therm. Anal. Calorim. 64, 413–422 (2001)CrossRefGoogle Scholar
  8. 8.
    W.J. Parker et al., Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961)ADSCrossRefGoogle Scholar
  9. 9.
    Y.S.K. Touloukian, R.K. Taylor, R.E. Desai, Thermal Expansion Metallic Elements and Alloys, vol. 12, Thermophysical Properties of Matter—the TPRC Data Series (University microfilms international, Ann Arbor, 1975)CrossRefGoogle Scholar
  10. 10.
    S.E. Gustafsson, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797–804 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    ASTM, E1225-13, Standard Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique, ASTM International, West Conshohocken, PA, 2013 (ASTM International, West Conshohocken, 2013)Google Scholar
  12. 12.
    ISO, 22007-2:2015 Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method (International Organization for Standardization, Geneve, 2015)Google Scholar
  13. 13.
    GUM, Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneve, 1995)Google Scholar
  14. 14.
    EAL-P7, EAL Interlaboratory Comparisons. 1996. Ed. 1Google Scholar
  15. 15.
    Y.S. Touloukian et al., Thermophysical Properties of Matter: Thermal Diffusivity (IFI/Plenum, New York, 1974)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bavarian Center for Applied Energy ResearchWürzburgGermany
  2. 2.Thyssenkrupp Steel Europe AGDuisburgGermany

Personalised recommendations