Advertisement

Consequences of Binary Chemically Reactive Flow Configuration of Williamson Fluid with Entropy Optimization and Activation Energy

  • M. Ijaz KhanEmail author
  • A. Alsaedi
  • Sumaira Qayyum
  • T. Hayat
Article

Abstract

Modeling for boundary layer stagnation point flow of Williamson fluid is developed. Electrically conducting liquid in presence of constant magnetic field is considered. Fluid is conducting. Induced magnetic field is accounted. Energy equation is modeled subject to radiative heat flux, heat source/sink and dissipation. Concentration equation for binary chemical reaction with activation energy is examined. Volumetric entropy rate is computed employing second law of thermodynamics. Nonlinear system numerically solved. Outcomes of velocity, temperature, entropy generation and concentration are carefully examined. Nusselt number and skin friction coefficient are numerically discussed. The obtained results are matched in an excellent manner.

Keywords

Activation energy Chemical reaction Entropy generation Heat source/sink MHD stagnation point flow Thermal radiation Viscous dissipation Williamson fluid 

Notes

References

  1. 1.
    A. Bejan, A study of entropy generation in fundamental convective heat transfer. ASME J. Heat Transf. 101, 718–725 (1979)Google Scholar
  2. 2.
    A. Bejan, Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 15, 1–58 (1982)Google Scholar
  3. 3.
    T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, Entropy generation in flow with silver and copper nanoparticles. Colloids Surf. A 539, 335–346 (2018)Google Scholar
  4. 4.
    M. Kiyasatfar, Convective heat transfer and entropy generation analysis of non-Newtonian power-law fluid flows in parallel-plate and circular microchannels under slip boundary conditions. Int. J. Therm. Sci. 128, 15–27 (2018)Google Scholar
  5. 5.
    T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating. Phys. Fluids 30, 017101 (2018)ADSGoogle Scholar
  6. 6.
    M.W.A. Khan, M.I. Khan, T. Hayat, A. Alsaedi, Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation. Phys. B 534, 113–119 (2018)ADSGoogle Scholar
  7. 7.
    J. Escandón, O. Bautista, F. Méndez, Entropy generation in purely electroosmotic flows of non-Newtonian fluids in a microchannel. Energy 55, 486–496 (2013)Google Scholar
  8. 8.
    M.I. Khan, T. Yasmeen, M.I. Khan, M. Farooq, M. Wakeel, Research progress in the development of natural gas as fuel for road vehicles: a bibliographic review (1991–2016). Renew. Sustain. Energy Rev. 66, 702–741 (2016)Google Scholar
  9. 9.
    T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, M.I. Khan, New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials. Phys. Lett. A 382, 749–760 (2018)ADSMathSciNetGoogle Scholar
  10. 10.
    N.V. Ganesh, Q.M. Al-Mdallal, A.J. Chamkha, A numerical investigation of Newtonian fluid flow with buoyancy, thermal slip of order two and entropy generation. Case Stud. Therm. Eng. 13, 100376 (2019)Google Scholar
  11. 11.
    M.I. Khan, S. Sumaira, T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial. J. Mol. Liq. 259, 274–283 (2018)Google Scholar
  12. 12.
    M.I. Khan, T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, Entropy generation minimization (EGM) in nonlinear mixed convective flow of nanomaterial with Joule heating and slip condition. J. Mol. Liq. 256, 108–120 (2018)Google Scholar
  13. 13.
    M.V. Bozorg, M. Siavashi, Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int. J. Mech. Sci. 151, 842–857 (2019)Google Scholar
  14. 14.
    M.I. Khan, S. Ullah, T. Hayat, M.I. Khan, A. Alsaedi, Entropy generation minimization (EGM) for convection nanomaterial flow with nonlinear radiative heat flux. J. Mol. Liq. 260, 279–291 (2018)Google Scholar
  15. 15.
    M.P. Boruah, S. Pati, P.R. Randive, Implication of fluid rheology on the hydrothermal and entropy generation characteristics for mixed convective flow in a backward facing step channel with baffle. Int. J. Heat Mass Transf. 137, 138–160 (2019)Google Scholar
  16. 16.
    M.I. Khan, S. Qayyum, T. Hayat, M.I. Khan, A. Alsaedi, T.A. Khan, Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys. Lett. A 382, 2017–2026 (2018)ADSMathSciNetGoogle Scholar
  17. 17.
    Z. Xie, Y. Jian, Entropy generation of magnetohydrodynamic electroosmotic flow in two-layer systems with a layer of non-conducting viscoelastic fluid. Int. J. Heat Mass Transf. 127, 600–615 (2018)Google Scholar
  18. 18.
    S. Qayyum, T. Hayat, M.I. Khan, M.I. Khan, A. Alsaedi, Optimization of entropy generation and dissipative nonlinear radiative Von Karman’s swirling flow with Soret and Dufour effects. J. Mol. Liq. 262, 261–274 (2018)Google Scholar
  19. 19.
    Y. Liu, Y. Jian, W. Tan, Entropy generation of electromagnetohydrodynamic (EMHD) flow in a curved rectangular microchannel. Int. J. Heat Mass Transf. 127, 901–913 (2018)Google Scholar
  20. 20.
    T. Hayat, M.I. Khan, T.A. Khan, M.I. Khan, S. Ahmad, A. Alsaedi, Entropy generation in Darcy-Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J. Mol. Liq. 265, 629–638 (2018)Google Scholar
  21. 21.
    M.M. Rashidi, S. Bagheri, E. Momoniat, N. Freidoonimehr, Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng. J. 8, 77–85 (2017)Google Scholar
  22. 22.
    T. Hayat, M.I. Khan, S. Qayyum, M.I. Khan, A. Alsaedi, Entropy generation for flow of Sisko fluid due to rotating disk. J. Mol. Liq. 264, 375–385 (2018)Google Scholar
  23. 23.
    G.J. Reddy, M. Kumar, O.A. Beg, Effect of temperature dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate. Phys. A 510, 426–445 (2018)MathSciNetGoogle Scholar
  24. 24.
    M.I. Khan, T. Hayat, A. Alsaedi, S. Qayyum, M. Tamoor, Entropy optimization and quartic autocatalysis in MHD chemically reactive stagnation point flow of Sisko nanomaterial. Int. J. Heat Mass Transf. 127, 829–837 (2018)Google Scholar
  25. 25.
    M. Shojaeian, A. Koşar, Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid flows between parallel-plates under slip boundary conditions. Int. J. Heat Mass Transf. 70, 664–673 (2014)Google Scholar
  26. 26.
    S. Qayyum, M.I. Khan, T. Hayat, A. Alsaedi, M. Tamoor, Entropy generation in dissipative flow of Williamson fluid between two rotating disks. Int. J. Heat Mass Transf. 127, 933–942 (2018)Google Scholar
  27. 27.
    D. Srinivasacharya, K.H. Bindu, Entropy generation due to micropolar fluid flow between concentric cylinders with slip and convective boundary conditions. Ain Shams Eng. J. 9, 245–255 (2018)Google Scholar
  28. 28.
    S. Ahmad, M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Entropy generation optimization and unsteady squeezing flow of viscous fluid with five different shapes of nanoparticles. Colloids Surf. A 554, 197–210 (2018)Google Scholar
  29. 29.
    G.H.R. Kefayati, N.A.C. Sidik, Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (Part II, entropy generation). Powder Technol. 305, 679–703 (2017)Google Scholar
  30. 30.
    M.I. Khan, S. Qayyum, T. Hayat, A. Alsaedi, M.I. Khan, Investigation of Sisko fluid through entropy generation. J. Mol. Liq. 257, 155–163 (2018)Google Scholar
  31. 31.
    M. Khan, M. Irfan, W.A. Khan, Heat transfer enhancement for Maxwell nanofluid flow subject to convective heat transport. Pramana 92, 17 (2018)ADSGoogle Scholar
  32. 32.
    M. Irfan, M. Khan, W.A. Khan, Interaction between chemical species and generalized Fourier’s law on 3D flow of Carreau fluid with variable thermal conductivity and heat sink/source: a numerical approach. Results Phys. 10, 107–117 (2018)ADSGoogle Scholar
  33. 33.
    Q. Hussain, N. Alvi, T. Latif, S. Asghar, Radiative heat transfer in Powell–Eyring nanofluid with peristalsis. Int. J. Thermophys. 40, 46 (2019)ADSGoogle Scholar
  34. 34.
    T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M. Waqas, T. Yasmeen, Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)Google Scholar
  35. 35.
    M.A. Taghikhani, Cu–Water nanofluid MHD mixed convection in a lid-driven cavity with two sinusoidal heat sources considering Joule heating effect. Int. J. Thermophys. 40, 44 (2019)ADSGoogle Scholar
  36. 36.
    M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017)ADSGoogle Scholar
  37. 37.
    Š. Hardoň, J. Kúdelčík, E. Jahoda, M. Kúdelčíková, The magneto-dielectric anisotropy effect in the oil-based ferrofluid. Int. J. Thermophys. 40, 24 (2019)ADSGoogle Scholar
  38. 38.
    M.I. Khan, T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation. J. Phys. Chem. Solids 125, 53–164 (2019)Google Scholar
  39. 39.
    A. Bicer, F. Kar, A model for determining the effective thermal conductivity of porous heterogeneous materials. Int. J. Thermophys. 40, 9 (2019)ADSGoogle Scholar
  40. 40.
    M. Sheikholeslami, S. Saleem, A. Shafee, Z. Li, T. Hayat, A. Alsaedi, M.I. Khan, Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Comput. Methods Appl. Mech. Eng. 349, 839–858 (2019)ADSMathSciNetGoogle Scholar
  41. 41.
    M. Irfan, M. Khan, W.A. Khan, M. Ayaz, Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport. Phys. Lett. A 382, 1992–2002 (2018)ADSGoogle Scholar
  42. 42.
    S. Malekian, E. Fathi, N. Malekian, H. Moghadasi, M. Moghimi, Analytical and numerical investigations of unsteady graphene oxide nanofluid flow between two parallel plates. Int. J. Thermophys. 39, 100 (2018)ADSGoogle Scholar
  43. 43.
    M. Khan, M. Irfan, W.A. Khan, Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition. Results Phys. 9, 851–857 (2018)ADSGoogle Scholar
  44. 44.
    M. Waqas, S. Jabeen, T. Hayat, M.I. Khan, A. Alsaedi, Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation. J. Magn. Magn. Mater. 485, 197–204 (2019)ADSGoogle Scholar
  45. 45.
    K.A. Yih, Free convection effect on MHD coupled heat and mass transfer of a moving permeable vertical surface. Int. Commun. Heat Mass Transf. 26, 95–104 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Ijaz Khan
    • 1
    Email author
  • A. Alsaedi
    • 2
  • Sumaira Qayyum
    • 1
  • T. Hayat
    • 1
    • 2
  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations