Advertisement

Interfacial Tension and Liquid Viscosity of Binary Mixtures of n-Hexane, n-Decane, or 1-Hexanol with Carbon Dioxide by Molecular Dynamics Simulations and Surface Light Scattering

  • Thomas M. KollerEmail author
  • Shaomin Yan
  • Corina Steininger
  • Tobias Klein
  • Andreas P. Fröba
Article
  • 57 Downloads

Abstract

In the present study, the interfacial tension and liquid viscosity of binary mixtures of n-hexane, n-decane, or 1-hexanol with carbon dioxide (CO2) were investigated by molecular dynamics (MD) simulations and surface light scattering (SLS). The latter technique was applied to study experimentally the influence of dissolved CO2 on the interfacial tension and liquid viscosity of binary mixtures of n-hexane with CO2 at 303.15 K and saturation pressures up to 5 MPa corresponding to a CO2 mole fraction in the liquid phase up to 0.75. For this system at vapor–liquid equilibrium, the liquid viscosity and interfacial tension were determined with average relative expanded uncertainties (k = 2) of (1.8 and 1.3) %. In equilibrium MD simulations for binary mixtures of n-hexane, n-decane, or 1-hexanol with CO2, the vapor–liquid equilibria including saturated densities as well as the interfacial tensions were predicted at temperatures of (303.15, 333.15, and 363.15) K for CO2 mole fractions in the liquid phase up to 0.52. For the binary mixtures of n-hexane with CO2, agreement between the measured and simulated data for viscosity and interfacial tension was found. With the three mixtures investigated by MD simulations, the influence of chain length and hydroxylation on the interfacial tension could be demonstrated. The simulations showed that the magnitude of CO2 enrichment at the vapor–liquid interface is more pronounced for solvents with larger surface tensions.

Keywords

Alcohols Carbon dioxide Interfacial tension Molecular dynamics simulations n-Alkanes Surface light scattering Viscosity 

Notes

Acknowledgments

This work was financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through funding the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative and via the project Grant FR 1709/15-1.

References

  1. 1.
    M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Chem. Eng. Process. 49, 313–322 (2010)Google Scholar
  2. 2.
    Y.-N. Li, R. Ma, L.-N. He, Z.-F. Diao, Catal. Sci. Technol. 4, 1498–1512 (2014)Google Scholar
  3. 3.
    A. Klerk, Y.W. Li, R. Zennaro, Greener Fischer–Tropsch Processes for Fuels and Feedstocks (Wiley, Weinheim, 2013)Google Scholar
  4. 4.
    M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, R. Songolzadeh, Sci. World J. 2014, 828131 (2014)Google Scholar
  5. 5.
    W.A. Wakeham, A. Nagashima, J.V. Sengers, Measurement of the Transport Properties of Fluids—Experimental Thermodynamics (Blackwell Scientific Publications, Oxford, 1991)Google Scholar
  6. 6.
    P.J. Wilde, Curr. Opin. Colloid Interface Sci. 5, 176–181 (2000)Google Scholar
  7. 7.
    I. Vural Gürsel, S.K. Kurt, J. Aalders, Q. Wang, T. Noël, K.D.P. Nigam, N. Kockmann, V. Hessel, Chem. Eng. J. 283, 855–868 (2016)Google Scholar
  8. 8.
    H. Orbey, S.I. Sandler, Can. J. Chem. Eng. 71, 437–446 (1993)Google Scholar
  9. 9.
    M. Suleymani, A. Bemani, Pet. Sci. Technol. 36, 227–231 (2017)Google Scholar
  10. 10.
    A.J. Queimada, I.M. Marrucho, J.A.P. Coutinho, Fluid Phase Equilib. 183, 229–238 (2001)Google Scholar
  11. 11.
    A.J. Queimada, L.I. Rolo, A.I. Caço, I.M. Marrucho, E.H. Stenby, J.A.P. Coutinho, Fuel 85, 874–877 (2006)Google Scholar
  12. 12.
    Y.-X. Zuo, E.H. Stenby, J. Colloid Interface Sci. 182, 126–132 (1996)ADSGoogle Scholar
  13. 13.
    C. Vega, E. de Miguel, J. Chem. Phys. 126, 154707 (2007)ADSGoogle Scholar
  14. 14.
    A.S. de Wijn, N. Riesco, G. Jackson, J.P. Trusler, V. Vesovic, J. Chem. Phys. 136, 074514 (2012)ADSGoogle Scholar
  15. 15.
    N. Riesco, V. Vesovic, Fluid Phase Equilib. 425, 385–392 (2016)Google Scholar
  16. 16.
    O.A. Moultos, I.N. Tsimpanogiannis, A.Z. Panagiotopoulos, J.P. Trusler, I.G. Economou, J. Phys. Chem. B 120, 12890–12900 (2016)Google Scholar
  17. 17.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)zbMATHGoogle Scholar
  18. 18.
    A. Ghoufi, P. Malfreyt, D.J. Tildesley, Chem. Soc. Rev. 45, 1387–1409 (2016)Google Scholar
  19. 19.
    F. Goujon, A. Ghoufi, P. Malfreyt, D.J. Tildesley, J. Chem. Theory Comput. 11, 4573–4585 (2015)Google Scholar
  20. 20.
    S. Werth, S.V. Lishchuk, M. Horsch, H. Hasse, Phys. A 392, 2359–2367 (2013)Google Scholar
  21. 21.
    S. Becker, S. Werth, M. Horsch, K. Langenbach, H. Hasse, Fluid Phase Equilib. 427, 476–487 (2016)Google Scholar
  22. 22.
    E.A. Müller, A. Mejia, J. Phys. Chem. B 115, 12822–12834 (2011)Google Scholar
  23. 23.
    F. Cao, Z. Gong, Y. Wu, H. Sun, Fluid Phase Equilib. 452, 58–68 (2017)Google Scholar
  24. 24.
    D. Zabala, C. Nieto-Draghi, J.C. de Hemptinne, A.L. López de Ramos, J. Phys. Chem. B 112, 16610–16618 (2008)Google Scholar
  25. 25.
    C. Giraudet, T. Klein, G. Zhao, M.H. Rausch, T.M. Koller, A.P. Fröba, J. Phys. Chem. B 122, 3163–3175 (2018)Google Scholar
  26. 26.
    D.K. Dysthe, A.H. Fuchs, B. Rousseau, Int. J. Thermophys. 19, 437–448 (1998)Google Scholar
  27. 27.
    S.W.I. Siu, K. Pluhackova, R.A. Böckmann, J. Chem. Theory Comput. 8, 1459–1470 (2012)Google Scholar
  28. 28.
    E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gathersburg, United States, 2018Google Scholar
  29. 29.
    D.K. Dysthe, A.H. Fuchs, B. Rousseau, M. Durandeau, J. Chem. Phys. 110, 4060–4067 (1999)ADSGoogle Scholar
  30. 30.
    A. Mejía, M. Cartes, H. Segura, E.A. Müller, J. Chem. Eng. Data 59, 2928–2941 (2014)Google Scholar
  31. 31.
    S. Nickerson, D.S. Frost, H. Phelan, L.L. Dai, J. Comput. Chem. 34, 2707–2715 (2013)Google Scholar
  32. 32.
    F. Biscay, A. Ghoufi, V. Lachet, P. Malfreyt, J. Phys. Chem. C 115, 8670–8683 (2011)Google Scholar
  33. 33.
    V. Diky, R.D. Chirico, C.D. Muzny, A.F. Kazakov, K. Kroenlein, J.W. Magee, I. Abdulagatov, M. Frenkel, J. Chem. Inf. Model. 53, 3418–3430 (2013)Google Scholar
  34. 34.
    M. Mohammed, F. Ciotta, J.P.M. Trusler, J. Chem. Eng. Data 62, 422–439 (2017)Google Scholar
  35. 35.
    K. Kian, A.M. Scurto, J. Supercrit. Fluids 133, 411–420 (2018)Google Scholar
  36. 36.
    A.S. Cullick, M.L. Mathis, J. Chem. Eng. Data 29, 393–396 (1984)Google Scholar
  37. 37.
    A.I. Rusanov, V.A. Prokhodrov, Interfacial Tensiometry (Elsevier, Amsterdam, 1996)Google Scholar
  38. 38.
    J.J. Jasper, J. Phys. Chem. Ref. Data 1, 841–1010 (1972)ADSGoogle Scholar
  39. 39.
    K. Zhao, S. Bi, J. Wu, J. Xi’an Jiaotong Univ. 50, 50–54 (2016)Google Scholar
  40. 40.
    A. Georgiadis, F. Llovell, A. Bismarck, F.J. Blas, A. Galindo, G.C. Maitland, J.P.M. Trusler, G. Jackson, J. Supercrit. Fluids 55, 743–754 (2010)Google Scholar
  41. 41.
    A.P. Fröba, S. Will, Light scattering by surface waves—surface light scattering, Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids (Royal Society of Chemistry, Cambridge, 2014), pp. 22–35Google Scholar
  42. 42.
    D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992)Google Scholar
  43. 43.
    Y. Nishimura, A. Hasegawa, Y. Nagasaka, Rev. Sci. Instrum. 85, 044904 (2014)ADSGoogle Scholar
  44. 44.
    G. Zhao, S. Bi, A.P. Fröba, J. Wu, J. Chem. Eng. Data 59, 1366–1371 (2014)Google Scholar
  45. 45.
    A.P. Fröba, C. Botero, A. Leipertz, Int. J. Thermophys. 27, 1609–1625 (2006)ADSGoogle Scholar
  46. 46.
    A.P. Fröba, H. Kremer, A. Leipertz, J. Phys. Chem. B 112, 12420–12430 (2008)Google Scholar
  47. 47.
    A.P. Fröba, K. Krzeminski, A. Leipertz, Int. J. Thermophys. 25, 987–1004 (2004)ADSGoogle Scholar
  48. 48.
    A.P. Fröba, A. Leipertz, Int. J. Thermophys. 22, 41–59 (2001)Google Scholar
  49. 49.
    A.P. Fröba, A. Leipertz, Int. J. Thermophys. 24, 895–921 (2003)Google Scholar
  50. 50.
    A.P. Fröba, A. Leipertz, J. Chem. Eng. Data 52, 1803–1810 (2007)Google Scholar
  51. 51.
    A.P. Fröba, L. Penedo Pellegrino, A. Leipertz, Int. J. Thermophys. 25, 1323–1337 (2004)ADSGoogle Scholar
  52. 52.
    T. Klein, J. Cui, A. Kalantar, J. Chen, M.H. Rausch, T.M. Koller, A.P. Fröba, J. Chem. Eng. Data 63, 2833–2839 (2018)Google Scholar
  53. 53.
    T.M. Koller, T. Klein, J. Chen, A. Kalantar, G.P. van der Laan, M.H. Rausch, A.P. Fröba, J. Phys. Chem. B 121, 10950–10956 (2017)Google Scholar
  54. 54.
    T.M. Koller, T. Klein, C. Giraudet, J. Chen, A. Kalantar, G.P. van der Laan, M.H. Rausch, A.P. Fröba, J. Chem. Eng. Data 62, 3319–3333 (2017)Google Scholar
  55. 55.
    T.M. Koller, T. Prucker, J. Cui, T. Klein, A.P. Fröba, J. Colloid Interface Sci. 538, 671–681 (2019)ADSGoogle Scholar
  56. 56.
    A.P. Fröba, Simultane Bestimmung von Viskosität und Oberflächenspannung transparenter Fluide mittels Oberflächenlichtstreuung, Doctoral thesis, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, 2002Google Scholar
  57. 57.
    E.H. Lucassen-Reynders, J. Lucassen, Adv. Colloid Interface Sci. 2, 347–395 (1970)Google Scholar
  58. 58.
    O. Kunz, W. Wagner, J. Chem. Eng. Data 57, 3032–3091 (2012)Google Scholar
  59. 59.
    P. Tin, D. Frate, H.C. de Groh III, Int. J. Thermophys. 22, 557–568 (2001)Google Scholar
  60. 60.
    H. Yue, Z. Liu, J. Chem. Eng. Data 61, 1270–1279 (2016)Google Scholar
  61. 61.
    T. Klein, W. Wu, M.H. Rausch, C. Giraudet, T.M. Koller, A.P. Fröba, J. Phys. Chem. B 122, 7122–7133 (2018)Google Scholar
  62. 62.
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225–11236 (1996)Google Scholar
  63. 63.
    M.E. Perez-Blanco, E.J. Maginn, J. Phys. Chem. B 114, 11827–11837 (2010)Google Scholar
  64. 64.
    J.J. Potoff, J.I. Siepmann, AIChE J. 47, 1676–1682 (2001)Google Scholar
  65. 65.
    M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2, 19–25 (2015)ADSGoogle Scholar
  66. 66.
    W.G. Hoover, Phys. Rev. A 31, 1695–1697 (1985)ADSGoogle Scholar
  67. 67.
    S. Nose, Mol. Phys. 52, 255–268 (1984)ADSGoogle Scholar
  68. 68.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089–10092 (1993)ADSGoogle Scholar
  69. 69.
    M.S. Green, J. Chem. Phys. 22, 398–413 (1954)ADSMathSciNetGoogle Scholar
  70. 70.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570–586 (1957)ADSGoogle Scholar
  71. 71.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33–38 (1996)Google Scholar
  72. 72.
    J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 17, 338–343 (1949)ADSGoogle Scholar
  73. 73.
    J.P.R.B. Walton, D.J. Tildesley, J.S. Rowlinson, J.R. Henderson, Mol. Phys. 48, 1357–1368 (2006)ADSGoogle Scholar
  74. 74.
    E. de Miguel, G. Jackson, J. Chem. Phys. 125, 164109 (2006)ADSGoogle Scholar
  75. 75.
    S. Werth, K. Stöbener, P. Klein, K.-H. Küfer, M. Horsch, H. Hasse, Chem. Eng. Sci. 121, 110–117 (2015)Google Scholar
  76. 76.
    J. Janeček, J. Phys. Chem. B 110, 6264–6269 (2006)Google Scholar
  77. 77.
    S. Werth, G. Rutkai, J. Vrabec, M. Horsch, H. Hasse, Mol. Phys. 112, 2227–2234 (2013)ADSGoogle Scholar
  78. 78.
    R.A. Zubillaga, A. Labastida, B. Cruz, J.C. Martinez, E. Sanchez, J. Alejandre, J. Chem. Theory Comput. 9, 1611–1615 (2013)Google Scholar
  79. 79.
    E.K. Michailidou, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 42, 033104 (2013)ADSGoogle Scholar
  80. 80.
    A. Laesecke, C.D. Muzny, J. Phys. Chem. Ref. Data 46, 013107 (2017)ADSGoogle Scholar
  81. 81.
    C.F. Weinaug, D.L. Katz, Ind. Eng. Chem. 35, 239–246 (1943)Google Scholar
  82. 82.
    A. Mulero, I. Cachadiña, M.I. Parra, J. Phys. Chem. Ref. Data 41, 043105 (2012)ADSGoogle Scholar
  83. 83.
    C. Secuianu, V. Feroiu, D. Geană, J. Chem. Thermodyn. 42, 1286–1291 (2010)Google Scholar
  84. 84.
    M. Chorążewski, M. Dzida, E. Zorębski, M. Zorębski, J. Chem. Thermodyn. 58, 389–397 (2013)Google Scholar
  85. 85.
    K.K. Cheng, C. Park, Heat Mass Transfer 53, 2255–2263 (2017)ADSGoogle Scholar
  86. 86.
    R.S. Taylor, B.C. Garrett, J. Phys. Chem. B 103, 844–851 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Advanced Optical Technologies – Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-University Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations