Advertisement

Carbon Aerogel for Insulation Applications: A Review

  • Lei Hu
  • Rujie HeEmail author
  • Hongshuai LeiEmail author
  • Daining Fang
Article
  • 17 Downloads

Abstract

Carbon aerogels, based on resorcinol and formaldehyde precursors and prepared by supercritical drying and high-temperature carbonization, are nanostructured carbons. Carbon aerogels have very low thermal conductivity due to their nanosized pores and particle structures; thus, they are promising as applicants in high-temperature insulation applications. It is well known that the thermal conductivity of carbon aerogels is composed of many components and influenced by many factors, and this review discusses the heat transfer mechanisms of the carbon aerogels. The synthesis procedures of the carbon aerogels were also reviewed. Moreover, the weak mechanical properties of pristine carbon aerogels limit their applications; therefore, it is necessary to strengthen the carbon aerogels and improve their mechanical properties. The reinforced carbon aerogels were introduced and reviewed.

Keywords

Carbon aerogel Reinforced carbon aerogel Thermal conductivity Thermal transfer mechanism 

Notes

Acknowledgments

The authors sincerely thank the financial supports from the National Natural Science Foundation of China (Nos. 11402003, 51772028), Beijing Natural Science Foundation (2182064) and Young Elite Scientist Sponsorship (YESS) Program by CAST (2015QNRC001).

References

  1. 1.
    D.W. Schaefer, K.D. Keefer, Phys. Rev. Lett. 56, 2199 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002)CrossRefGoogle Scholar
  3. 3.
    N. Husing, U. Schubert, Angew. Chem. Int. Ed. 37, 22 (1998)CrossRefGoogle Scholar
  4. 4.
    S.S. Kistler, Nature 127, 741 (1931)ADSCrossRefGoogle Scholar
  5. 5.
    X.D. Wang, D. Sun, Y.Y. Duan, Z.J. Hu, J. Non Cryst. Solids 375, 31 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    G. Zu, J. Shen, L. Zou, Chem. Mater. 25, 4757 (2013)CrossRefGoogle Scholar
  7. 7.
    K. Chen, Z. Bao, A. Du, J. Sol Gel Sci. Technol. 62, 294 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Biedunkiewicz, P. Figiel, M. Krawczyk, U. Gabriel-Polrolniczak, J. Therm. Anal. Calorim. 113, 253 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Alince, Colloid Polym. Sci. 253, 720 (1975)CrossRefGoogle Scholar
  10. 10.
    A. Olli, J. Olli, Carbohydr. Polym. 75, 125 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Wang, M.W. Ellsworth, Ecs Transactions Lett. 19 (2009)Google Scholar
  12. 12.
    J.T. Korhonen, P. Hiekkataipale, J. Malm, R.H.A. Ras, ACS Nano 5, 1967 (2011)CrossRefGoogle Scholar
  13. 13.
    M.A. Aegerter, N. Leventis, M.M. Koebel, Aerogels Handbook (Springer, Berlin, 2011), p. 215Google Scholar
  14. 14.
    J.M. Schultz, K.I. Jensen, F.H. Kristiansen, Sol. Energy Mater. Sol. Cells 89, 275 (2005)CrossRefGoogle Scholar
  15. 15.
    O. Nilsson, V. Bock, J. Fricke, in 22nd Thermal Conductivity Conference (Tempe, Arizona, 1993)Google Scholar
  16. 16.
    R.W. Pekala, J. Mater. Sci. 24, 3221 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    D. Wu, R. Fu, Z. Sun, Z. Yu, J. Non Cryst. Solids 351, 915 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    H. Jirglova, A.F. Perez-Cadenas, F.J. Maldonado-Hodar, Langmuir 25, 2461 (2009)CrossRefGoogle Scholar
  19. 19.
    A.L. Peikolainen, F. Perez-Caballero, M. Koel, Oil Shale 25, 348 (2008)CrossRefGoogle Scholar
  20. 20.
    D. Long, Q. Chen, L. Ling, Chem. Commun. 26, 3898 (2009)CrossRefGoogle Scholar
  21. 21.
    W. Li, G. Reichenauer, Carbon 40, 2955 (2002)CrossRefGoogle Scholar
  22. 22.
    D. Long, R. Zhang, L. Ling, J. Colloids Interface. Sci. 331, 40 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A.K. Meena, G.K. Mishra, P.N. Nagar, J. Hazard Mater. 122, 161 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Wiener, G. Reichenauer, F. Hemberger, H.P. Ebert, Int. J. Thermophys. 27, 1826 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Hanzawa, H. Hatori, N. Yoshizawa, Y. Yamada, Carbon 40, 575 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Feng, Y. Jiang, C. Zhang, Mater. Lett. 65, 3454 (2011)CrossRefGoogle Scholar
  27. 27.
    F. Hemberger, S. Weis, G. Reichenauer, H.P. Ebert, Int. J. Thermophys. 30, 1357 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    X. Lu, O. Nilsson, J. Fricke, R.W. Pekala, J. Appl. Phys. 73, 581 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    V. Bock, O. Nilsson, J. Blumm, J. Fricke, J. Non Cryst. Solids 185, 233 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    M. Wiener, G. Reichenauer, H.P. Ebert, S. Braxmeier, F. Hemberger, Int. J. Thermophys. 30, 1372 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    G. Reichenauer, U. Heinemann, H.P. Ebert, Colloids Surf. A 300, 204 (2007)CrossRefGoogle Scholar
  32. 32.
    O.J. Lee, K.H. Lee, K.P. Yoo, J. Non Cryst. Solids 298, 287 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    W.H. Xie, B.M. Zhang, S.Y. Du, Acta Aeronautica Et Astronautica Sinica 27, 650 (2006)Google Scholar
  34. 34.
    J. Feng, J. Feng, C. Zhang, J. Porous. Mater. 19, 551 (2012)CrossRefGoogle Scholar
  35. 35.
    K. Swimm, G. Reichenauer, S. Vidi, H.P. Ebert, J. Sol Gel Sci. Technol. 9, 1 (2017)Google Scholar
  36. 36.
    S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15, 101 (2010)CrossRefGoogle Scholar
  37. 37.
    E.J. Zanto, A.M. And, J.A. Ritter, Ind. Eng. Chem. Res. 41, 3151 (2002)CrossRefGoogle Scholar
  38. 38.
    M. Sprung, J. Am. Chem. Soc. 2, 334 (2002)Google Scholar
  39. 39.
    S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 19, 6138 (2007)CrossRefGoogle Scholar
  40. 40.
    H. Tamon, H. Ishizaka, M. Mikami, M. Okazaki, Carbon 35, 791 (1997)CrossRefGoogle Scholar
  41. 41.
    R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non Cryst. Solids 145, 90 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    T. Yamamoto, T. Nishimura, T. Suzuki, H. Tamon, J. Non Cryst. Solids 288, 46 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 38, 1099 (2000)CrossRefGoogle Scholar
  44. 44.
    F. Despetis, K. Barral, L. Kocon, J. Phalippou, J. Sol Gel. Sci. Technnol. 19, 829 (2000)CrossRefGoogle Scholar
  45. 45.
    R.W. Pekala, S.T. Mayer, J.F.P.J.L. Kaschmitier, Mrs Proceedings. pp. 1-16. Washington, DC, United States (1994)Google Scholar
  46. 46.
    H.H. Jung, S.W. Hwang, S.H. Hyun, K.H. Lee, G.T. Kim, Desalination 216, 377 (2007)CrossRefGoogle Scholar
  47. 47.
    D. Wu, R. Fu, S. Zhang, M.S. Dresselhaus, G. Dresselhaus, Carbon 42, 2033 (2004)CrossRefGoogle Scholar
  48. 48.
    U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke, J. Porous. Mater. 4, 281 (1997)CrossRefGoogle Scholar
  49. 49.
    M. Glora, M. Wiener, R. Petricevic, J. Fricke, J. Non Cryst. Solids 285, 283 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    R.W. Pekala, J.C. Farmer, C.T. Alviso, J. Non Cryst. Solids 225, 74 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    J. Wang, M. Glora, R. Petricevic, R. Saliger, J. Fricke, J. Porous. Mater. 8, 159 (2001)CrossRefGoogle Scholar
  52. 52.
    C. Lin, J.A. Ritter, Carbon 38, 849 (2000)CrossRefGoogle Scholar
  53. 53.
    J. Feng, C. Zhang, J. Feng, N. Zhao, ACS. Appl. Mater. Interfaces 3, 4796 (2011)CrossRefGoogle Scholar
  54. 54.
    J. Wang, M. Chen, C. Wang, J. Wang, J. Zheng, Mater. Lett. 68, 446 (2012)CrossRefGoogle Scholar
  55. 55.
    G.P. Wu, J. Yang, C.X. Lu, Mater. Lett. 115, 1 (2014)CrossRefGoogle Scholar
  56. 56.
    C. Liang, G. Sha, S. Guo, J. Non Cryst. Solids 271, 167 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    D. Wu, R. Fu, Microporous Mesoporous Mater. 96, 115 (2006)CrossRefGoogle Scholar
  58. 58.
    N. Liu, S. Zhang, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44, 2430 (2006)CrossRefGoogle Scholar
  59. 59.
    R. Fu, B. Zheng, J. Liu, J. Appl. Polym. Sci. 91, 3060 (2010)CrossRefGoogle Scholar
  60. 60.
    R. Fu, B. Zheng, J. Liu, Adv. Funct. Mater. 13, 558 (2010)CrossRefGoogle Scholar
  61. 61.
    R. Jacobs, Carbon 37, 1199 (1999)CrossRefGoogle Scholar
  62. 62.
    H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 37, 2049 (1999)CrossRefGoogle Scholar
  63. 63.
    T. Yamamoto, T. Sugimoto, H. Tamon, Carbon 40, 1345 (2002)CrossRefGoogle Scholar
  64. 64.
    H.K. Wu, X.M. Li, L. Qian, Mater. Sci. Forum 898, 1923 (2017)CrossRefGoogle Scholar
  65. 65.
    X. Zhang, Z. Sui, B. Xu, J. Mater. Chem. 21, 6494 (2011)CrossRefGoogle Scholar
  66. 66.
    H. Sun, Z. Xu, C. Gao, Adv. Mater. 25, 2554 (2013)CrossRefGoogle Scholar
  67. 67.
    J.L. Kaschmitter, S.T. Mayer, R.W. Pekala, Patent 5,789,338, A1 (1998)Google Scholar
  68. 68.
    N. Job, A. Thery, R. Pirard, Carbon 43, 2481 (2005)CrossRefGoogle Scholar
  69. 69.
    R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non Cryst. Solids 145, 90 (1992)ADSCrossRefGoogle Scholar
  70. 70.
    S.T. Mayer, R.W. Pekala, J.L. Kaschmitter, Cheminform. 24, 446 (1997)Google Scholar
  71. 71.
    I. Najeh, N.B. Mansour, M. Mbarki, A. Houas, J.P. Nogier, L.E. Mir, Solid State Sci. 11, 1747 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    Y. Zhong, Y. Kong, X. Shen, S. Cui, J. Zhang, Microporous Mesoporous Mater. 172, 182 (2013)CrossRefGoogle Scholar
  73. 73.
    V. Drach, M. Wiener, J. Fricke, Int. J. Thermophys. 28, 1542 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    J. Yang, S. Li, Y. Luo, L. Yan, F. Wang, Carbon 49, 1542 (2011)CrossRefGoogle Scholar
  75. 75.
    R. Petrivevic, M. Glora, J. Fricke, Carbon 39, 857 (2001)CrossRefGoogle Scholar
  76. 76.
    A.K. Geim, Science 324, 1530 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    J. Liang, Y. Huang, L. Zhang, Adv. Funct. Mater. 19, 2297 (2010)CrossRefGoogle Scholar
  78. 78.
    H.F. Ju, W.L. Song, L.Z. Fan, J. Mater. Chem. A 2, 10895 (2014)CrossRefGoogle Scholar
  79. 79.
    K. Guo, Z. Hu, X. Chen, RSC Adv. 5, 5197 (2014)CrossRefGoogle Scholar
  80. 80.
    Y. Zhang, W. Fan, Y. Huang, T. Liu, RSC Adv. 5, 1301 (2015)CrossRefGoogle Scholar
  81. 81.
    W. Sun, A. Du, J. Tang, J. Sol Gel Sci. Technol. 80, 68 (2016)CrossRefGoogle Scholar
  82. 82.
    F. Meng, X. Zhang, Y. Luo, J. Mater. Chem. 21, 18537 (2011)CrossRefGoogle Scholar
  83. 83.
    K. Guo, H. Song, L. Zhong, Phys. Chem. Chem. Phys. 16, 11603 (2014)CrossRefGoogle Scholar
  84. 84.
    D. Tasis, N. Tagmatarchis, A. Bianco, M.L. Prato, Chem. Rev. 106, 1105 (2006)CrossRefGoogle Scholar
  85. 85.
    T. Bordjiba, M. Mohamedi, L.H. Dao, J. Power Sources 172, 991 (2007)ADSCrossRefGoogle Scholar
  86. 86.
    Y. Tao, C.M. Yang, Langmuir 23, 9155 (2007)CrossRefGoogle Scholar
  87. 87.
    J. Biener, M. Stadermann, M. Suss, Energy Environ. Sci. 4, 656 (2011)CrossRefGoogle Scholar
  88. 88.
    M. Ciszewski, Eb. Szatkowska, A. Koszorek, M. Majka, J. Mater. Sci. 1 (2017)Google Scholar
  89. 89.
    M.A. Worsley, J.H. Satcher, T.F. Baumann, Langmuir 24, 9763 (2008)CrossRefGoogle Scholar
  90. 90.
    M.A. Worsley, T.F. Baumann, Acta Mater. 57, 5131 (2009)CrossRefGoogle Scholar
  91. 91.
    M.C. Gutierrez, F. Rubio, F.D. Monte, Chem. Mater. 22, 2711 (2010)CrossRefGoogle Scholar
  92. 92.
    L.W. Hrubesh, Patent 20,030,134,916, A1 (2003)Google Scholar
  93. 93.
    H. Cheng, H. Xue, C. Hong, X. Zhang, RSC Adv. 6, 75793 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China
  3. 3.Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and StructuresBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations