Advertisement

Performance Analysis of a Metamaterial-Based Near-Field Thermophotovoltaic System Considering Cooling System Energy Consumption

  • Qichen Xu
  • Peizhou Chen
  • Xi WuEmail author
  • Qilin CaiEmail author
Article
  • 41 Downloads

Abstract

A mathematical physical model of a near-field thermophotovoltaic (TPV) system containing a metamaterial emitter comprised of W-nanowire arrays embedded in a SiC host is constructed. It is notable that this model incorporates a cooling system. On this basis, the influence of the emitter temperature and filling ratio, the cell and emitter thicknesses, and the emitter cell vacuum gap on the TPV system output performance is analyzed. It is found that the cooling device energy consumption increases by two orders of magnitude with decreased emitter cell gap size in the near-field; the highest possible value is 267.74 W·cm−2. However, the maximum net system efficiency is only 11.79 %. The emitter radiation capability can be enhanced by increasing the emitter temperature, but the cooling system energy consumption remains a significant problem. When the emitter temperature increases to 2200 K, the net system efficiency and net output density reach maximum values of only 6.22 % and 36.28 W·cm−2, respectively. Further investigation demonstrates that a large emitter thickness can induce a surface disturbance phenomenon, resulting in rapid decreases in the net system output power density and net system efficiency to − 251.85 W·cm−2 and − 12.86 %, respectively. However, when the cell thickness increases beyond 1000 nm, the net system efficiency and output power density are stable at 2.13 % and 24.12 W·cm−2, respectively. Finally, the emitter filling ratio should be increased as much as possible to maintain good system performance.

Keywords

Cooling energy consumption Metamaterial Near-field radiation TPV system 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51406126).

References

  1. 1.
    S. Molesky, C.J. Dewalt, Z. Jacob, High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 21, A1035–A1051 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Deng, T. Wang, J. Gao, X. Yang, Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics. J. Opt. 16, 35102 (2014)CrossRefGoogle Scholar
  3. 3.
    J.-Y. Chang, Y. Yang, L. Wang, Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications. Int. J. Heat Mass Transf. 87, 237–247 (2015)CrossRefGoogle Scholar
  4. 4.
    K. Qiu, A.C.S. Hayden, Thermophotovoltaic power generation systems using natural gas-fired radiant burners. Sol. Energy Mater. Sol. Cells 91, 588–596 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Qiu, A.C.S. Hayden, Development of a novel cascading TPV and TE power generation system. Appl. Energy 91, 304–308 (2012)CrossRefGoogle Scholar
  6. 6.
    T.A. Butcher, J.S. Hammonds, E. Horne, B. Kamath, J. Carpenter, D.R. Woods, Heat transfer and thermophotovoltaic power generation in oil-fired heating systems. Appl. Energy 88, 1543–1548 (2011)CrossRefGoogle Scholar
  7. 7.
    E. Shoaei, Performance assessment of thermophotovoltaic application in steel industry. Sol. Energy Mater. Sol. Cells 157, 55–64 (2016)CrossRefGoogle Scholar
  8. 8.
    X. Wu, H. Ye, J. Wang, Experimental analysis of cell output performance for a TPV system. Sol. Energy Mater. Sol. Cells 95, 2459–2465 (2011)CrossRefGoogle Scholar
  9. 9.
    W. Durisch, B. Bitnar, J.-C. Mayor, F. von Roth, H. Sigg, H.R. Tschudi et al., Small self-powered grid-connected thermophotovoltaic prototype system. Appl. Energy 74, 149–157 (2003)CrossRefGoogle Scholar
  10. 10.
    X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, X. Wu, Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system. Appl. Energy 113, 924–931 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Francoeur, R. Vaillon, M.P. Mengüç, Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Trans. Energy Convers. 26, 686–698 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Basu, Z.M. Zhang, C.J. Fu, Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Francoeur, M.P. Mengüç, R. Vaillon, Spectral tuning of near-field radiative heat flux between two thin silicon carbide films. J. Phys. Appl. Phys. 43, 75501 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Park, S. Basu, W.P. King, Z.M. Zhang, Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    A.W. Bett, S. Keser, O.V. Sulima, Study of Zn diffusion into GaSb from the vapour and liquid phase. J. Cryst. Growth 181, 9–16 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    P.S. Dutta, B. Méndez, J. Piqueras, E. Dieguez, H.L. Bhat, Nature of compensating luminescence centers in Te-diffused and -doped GaSb. J. Appl. Phys. 80, 1112–1115 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    J.A. González-Cuevas, T.F. Refaat, M.N. Abedin, H.E. Elsayed-Ali, Modeling of the temperature-dependent spectral response of In1−χGaχSb infrared photodetectors. Opt. Eng. 45, 44001–0440018 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Yang, K.T. Chan, X. Wu, F.W. Yu, X. Yang, An analysis on the energy efficiency of air-cooled chillers with water mist system. Energy Build. 55, 273–284 (2012)CrossRefGoogle Scholar
  19. 19.
    B. Song, A. Fiorino, E. Meyhofer, P. Reddy, Near-field radiative thermal transport: from theory to experiment. AIP Adv. 5, 053503 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J.K. Tong, W.-C. Hsu, Y. Huang, S.V. Boriskina, G. Chen, Thin-film “thermal well” emitters and absorbers for high-efficiency thermophotovoltaics. Sci. Rep. 5, 10661 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    M.P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, M. Francoeur, Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Sci. Rep. 5, 11626 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    H. Daneshvar, R. Prinja, N.P. Kherani, Thermophotovoltaics: fundamentals, challenges and prospects. Appl. Energy 159, 560–575 (2015)CrossRefGoogle Scholar
  23. 23.
    X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-field thermal radiation between hyperbolic metamaterials: graphite and carbon nanotubes. Appl. Phys. Lett. 103, 213102 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    S. Basu, Y. Yang, L. Wang, Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films. Appl. Phys. Lett. 106, 033106 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    X.J. Wang, S. Basu, Z.M. Zhang, Parametric optimization of dielectric functions for maximizing nanoscale radiative transfer. J. Phys. Appl. Phys. 42, 245403 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    O. Ilic, M. Jablan, J.D. Joannopoulos, I. Celanovic, M. Soljačić, Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Opt. Express 20, A366 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S.-A. Biehs, P. Ben-Abdallah, F.S.S. Rosa, K. Joulain, J.-J. Greffet, Nanoscale heat flux between nanoporous materials. Opt. Express 19, A1088 (2011)CrossRefGoogle Scholar
  28. 28.
    S.-A. Biehs, Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials. Eur. Phys. J. B 58, 423–431 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Yang, S. Basu, L. Wang, Vacuum thermal switch made of phase transition materials considering thin film and substrate effects. J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Yang, L. Wang, Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates. J. Quant. Spectrosc. Radiat. Transf. 197, 68–75 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    S. Basu, L. Wang, Near-field radiative heat transfer between doped silicon nanowire arrays. Appl. Phys. Lett. 102, 053101 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    S.-A. Biehs, M. Tschikin, P. Ben-Abdallah, Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109, 104301 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    H. Wang, X. Liu, L. Wang, Z. Zhang, Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation. Int. J. Therm. Sci. 65, 62–69 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Basu, M. Francoeur, Penetration depth in near-field radiative heat transfer between metamaterials. Appl. Phys. Lett. 99, 143107 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Yang, L. Wang, Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps. Phys. Rev. Lett. 117, 044301 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1998)Google Scholar
  37. 37.
    O.V. Sulima, A.W. Bett, Fabrication and simulation of GaSb thermophotovoltaic cells. Sol. Energy Mater. Sol. Cells 66, 533–540 (2001)CrossRefGoogle Scholar
  38. 38.
    D. Martín, C. Algora, Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling. Semicond. Sci. Technol. 19, 1040 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    H. Ye, L. Tang, Y. Ma, Experimental and theoretical investigation of zinc diffusion in N-GaSb. Chin. Sci. Bull. 55, 2489–2496 (2010)CrossRefGoogle Scholar
  40. 40.
    P.S. Dutta, B. Méndez, J. Piqueras, E. Dieguez, H.L. Bhat, Nature of compensating luminescence centers in Te-diffused and -doped GaSb. J. Appl. Phys. 80, 1112–1115 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Rail TransportationSoochow UniversitySuzhouChina
  2. 2.College of Energy, Soochow Institute for Energy and Materials InnovationsSoochow UniversitySuzhouChina
  3. 3.Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhouChina

Personalised recommendations