Advertisement

Thermal Effusivity of Human Fluids

  • J. L. González-DomínguezEmail author
  • A. Cruz-Orea
  • H. Rojas-Chávez
  • F. Sánchez-Sinencio
  • C. Hernández-Aguilar
  • F. A. Domínguez-Pacheco
Article
  • 14 Downloads

Abstract

In the present study, the thermal effusivities of human fluids, such as human blood serum, urine, saliva and tears, were obtained by the photopyroelectric (PPE) technique in inverse configuration (IPPE). Human blood serum and urine were obtained from studies carried out in a government hospital for public servants in Mexico City, whereas saliva and tears were artificial. Making use of both, the amplitude and phase of the PPE signal, the thermal effusivities of each one of the mentioned human fluids were obtained. In order to obtain them, the experimental PPE data were normalized to the PPE signal with air as sample and the theoretical PPE equation was fitted to the normalized experimental data.

Keywords

Human fluids Photopyroelectric Thermal effusivity 

Notes

Acknowledgments

The authors are thankful to Ms. Isabel Rojas from Hospital “1o. De octubre” of the ISSSTE and also to CONACYT for the partial economical support from both Project No. 241330 and for postdoctoral fellowship to Mr. José Luis González Domínguez and Mr Hugo Rojas-Chávez. We also thank Ms. Esther Ayala from the Photothermal Techniques Laboratory of Physics Department, CINVESTAV-IPN, for the support to develop the experiments of the present study.

References

  1. 1.
    S.W. Shalaby, in Thermal Characterization of Polymeric Materials, ed. by E.A. Turi (Academic Press, New York, 1981), p. 237Google Scholar
  2. 2.
    J.D. James, J.A. Spittle, S.G.R. Brown, R.W. Evans, Meas. Sci. Technol. 12, 201 (2001)CrossRefGoogle Scholar
  3. 3.
    R. Savino, L. Criscuolo, G.D. Di Martino, S. Mungiguerra, J. Eur. Ceram. Soc. (2017).  https://doi.org/10.1016/j.jeurceramsoc.2017.12.043 CrossRefGoogle Scholar
  4. 4.
    A. Pinto-Neto, H. Vargas, N.F. Leite, L.C.M. Miranda, Phys. Rev. B 41, 9971 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    A.O. Guimarães, D.A. Viana, T.C. Cordeiro, J.A. Sampaio, E.C. da Silva, R. Toledo, H.J.P.S. Ribeiro, A.A.G. Carrasquilla, H. Vargas, Mar. Pet. Geol. 43, 121 (2013)CrossRefGoogle Scholar
  6. 6.
    J.H. Schön, Physical Properties of Rocks: A Workbook (Elsevier, Oxford, 2011)Google Scholar
  7. 7.
    J.P.S. Morais, M. de Freitas Rosa, L.D. Nascimento, Carbohydr. Polym. 91, 229 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Aluigi, C. Vineis, A. Ceria, C. Tonin, Compos. A Appl. Sci. Manuf. 39, 126 (2008)CrossRefGoogle Scholar
  9. 9.
    L.F. Drummy, D.M. Phillips, M.O. Stone, B.L. Farmer, R.R. Naik, Biomacromolecules 6, 3328 (2005)CrossRefGoogle Scholar
  10. 10.
    A. Gijsbertsen, D. Bicanic, J.L.W. Gielen, M. Chirtoc, Infrared Phys. Technol. 45, 93 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Mahapatra, Y. Lan, D.L. Harris, Int. J. Food Prop. 14, 675 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Kobelnilk, G. Guadagnucci-Fontanari, D. Lopes-Cassimiro, C. Augusto-Ribeiro, M. Spirandeli-Crespi, J. Therm. Anal. Calorim. 115, 2045 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Kocabiyik, B. Kayisoglu, D. Tezer, Int. J. Food Prop. 12, 277 (2009)CrossRefGoogle Scholar
  14. 14.
    M.J. Dennis, Analyst 123, 151R (1998)ADSCrossRefGoogle Scholar
  15. 15.
    C.D. Moyes, P.M. Schulte, Principles of Animal Physiology, 2nd edn. (Pearson, Toronto, 2016), pp. 634–667Google Scholar
  16. 16.
    IUPS Thermal Commission, Jpn. J. Physiol. 51, 567 (2001)Google Scholar
  17. 17.
    M. Wahbah, M. Alhawari, B. Mohammad, M. Ismail, IEEE J. Emerg. Sel. Top. Circuits Syst. 4, 354 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A. Mandelis, M. Zver, J. Appl. Phys. 1, 4421 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    Eindhoven University of Technology, Course Book (2009), pp. 1–16Google Scholar
  20. 20.
    C.J.M. Lasance, Thermal Effusvitiy (Electronics Cooling, 2007), http://www.electronics-cooling.com/2007/11/thermal-effusivity/. Accessed 1 Feb 2017
  21. 21.
    M. Cervantes-Espinosa, F.D.L. Castillo-Alvarado, G. Lara-Hernández, A. Cruz-Orea, J.G. Mendoza-Alvarez, J.P. Valcárcel, A. García-Quiroz, Int. J. Thermophys. 33, 1916 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    D.L. Phillips, J.L. Pirkle, B.W. Burce, J.T. Bernert Jr., L.O. Henderson, L.L. Needham, Arch. Environ. Contam. Toxicol. 18, 495 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsCINVESTAV-IPNCiudad de MéxicoMéxico
  2. 2.Department of SystemsIPN-ESIME-ZAC-SEPI, Unidad Profesional Adolfo López MateosCiudad de MéxicoMéxico

Personalised recommendations