Thermal Imaging Using Photoacoustic Microscopy with Different Excitation Wavelengths
- 22 Downloads
Abstract
The study of structures in different materials is increasingly important. In many cases, these materials have different layers that compose them, and it is not easy to observe or detect some internal structures or damages without destroying the samples. Photothermal (PT) techniques, such as photoacoustic spectroscopy, photoacoustic (PAM) and photopyroelectric microscopies, are valuable nondestructive techniques. PT microscopies allow to make scans of samples in order to obtain their thermal images. In this study, thermal images of two different samples were obtained, by using PAM at different excitation wavelengths.
Keywords
Photoacoustic microscopy Photothermal techniques Thermal imagesNotes
Acknowledgments
The authors thank the Instituto Politécnico Nacional, through the CONACYT, COFAA, EDI and projects SIP scholarships. Also, Photothermal Techniques Laboratory of Physics Department, CINVESTAV-IPN and Spectroscopy Laboratory, IIM-UNAM are acknowledged for the support to develop the experiments of the present study. We also thank Ing. Esther Ayala, Ing. M. Guerrero, Ing. A. B. Soto, Quim. M. A. Canseco Martínez. One of the authors (A. Cruz-Orea) thanks also the partial financial support from CONACYT Project No. 241330.
References
- 1.A. Rosencwaig, A.J. Gersho, Appl. Phys. 47, 64 (1976)CrossRefGoogle Scholar
- 2.A. Rosencwaig, Phys. Today 28, 23 (1975)CrossRefGoogle Scholar
- 3.R.S. Quimby, W.M. Yen, J. Appl. Phys. 51, 1780 (1980)ADSCrossRefGoogle Scholar
- 4.C. Manfredotti, F. Fizzotti, M. Boero, M. Bossi, A. Zanini, Solid State Commun. 98, 655 (1996)ADSCrossRefGoogle Scholar
- 5.J. Soldner, K. Stephan, Chem. Eng. Prog. Process Intensif. 38, 585 (1999)CrossRefGoogle Scholar
- 6.S. Qi-Ming, G. Chun-Ming, Z. Bin-Xing, R. Hai-Bo, Chin. Phys. B 19, 118103 (2010)ADSCrossRefGoogle Scholar
- 7.P.C. Menon, R.N. Rajesh, C. Glorieux, Rev. Sci. Instrum. 80, 054904 (2009)ADSCrossRefGoogle Scholar
- 8.D. Dadarlat, C. Neamtu, N. Houriez, S. Delenclos, S. Longuemart, A.H. Sahraoui, Eur. Phys. J. Spec. Top. 153, 115 (2008)CrossRefGoogle Scholar
- 9.J. Thoen, C. Glorieux, Thermochim. Acta 304, 137 (1997)CrossRefGoogle Scholar
- 10.A. Mandelis, S. Paoloni, L. Nicolaides, Rev. Sci. Instrum. 71, 2440 (2000)ADSCrossRefGoogle Scholar
- 11.A.G. Bell, Philos. Mag. 11, 510 (1881)CrossRefGoogle Scholar
- 12.J.L. Chávez, Tratamiento digital de imágenes multiespectrales, 2do edición, (U. N. A. M., Instituto de Geofísica, 2010), pp. 12–28Google Scholar
- 13.T.H. Barringer, V.B. Robinson, Stochastic models of cover class dynamics. [Remote sensing of vegetation], in 15th International Symposium on Remote Sensing of Environment, (Ann Arbor, MI, 11–15 May 1981)Google Scholar
- 14.W.T. Reeves, ACM Trans. Gr. (TOG) 2, 91–108 (1983)CrossRefGoogle Scholar
- 15.A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall Inc, Upper Saddle River, 1989)zbMATHGoogle Scholar
- 16.G. Ramstein, M. Raffy, Int. J. Remote Sens. 10, 1049–1107 (1989)ADSCrossRefGoogle Scholar
- 17.T.S. Huang (ed.), Image Sequence Analysis, vol. 5 (Springer, Berlin, 2013)Google Scholar
- 18.W.S. Lu (ed.), Two-Dimensional Digital Filters, vol. 80 (CRC Press, Boca Raton, 1992)zbMATHGoogle Scholar
- 19.A. Vyas, S. Yu, J. Paik, Multiscale Transforms with Application to Image Processing (Springer, Berlin, 2017)Google Scholar
- 20.H.W. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)ADSCrossRefGoogle Scholar
- 21.Z. Zivkovic, F. Van Der Heijden, Pattern Recognit. Lett. 27, 773 (2006)CrossRefGoogle Scholar
- 22.A. Mittal, N. Paragios, in Proceedings of the 2004 IEEE Computer Society Conference on CVPR 2004, vol 2 (IEEE, 2004), pp. II–IIGoogle Scholar
- 23.K. Dralle, M. Rudemo, Can. J. For. Res. 26, 1228 (1996)CrossRefGoogle Scholar
- 24.H.H. Sherief, F.A. Hamza, H.A. Saleh, Int. J. Eng. Sci. 42, 591 (2004)CrossRefGoogle Scholar
- 25.J. Opsal, A. Rosencwaig, J. Appl. Phys. 53, 4240 (1982)ADSCrossRefGoogle Scholar
- 26.J.A. Balderas-Lopez, A. Mandelis, J. Appl. Phys. 90, 2273 (2001)ADSCrossRefGoogle Scholar
- 27.Y.Q. Song, J.T. Bai, Z.Y. Ren, Acta Mech. 223, 1545 (2012)MathSciNetCrossRefGoogle Scholar
- 28.A. Rosencwaig, G. Busse, Appl. Phys. Lett. 36, 725 (1980)ADSCrossRefGoogle Scholar
- 29.A. Rosencwaig, Science 218, 223 (1982)ADSCrossRefGoogle Scholar
- 30.Y. Fan, A. Mandelis, G. Spirou, I. Alex Vitkin, J. Acoust. Soc. Am. 116, 3523 (2004)ADSCrossRefGoogle Scholar
- 31.S. Telenkov, A. Mandelis, B. Lashkari, M. Forcht, J. Appl. Phys. 105, 102029 (2009)ADSCrossRefGoogle Scholar
- 32.S.A. Telenkov, A. Mandelis, J. Biomed. Opt. 14, 044025 (2009)ADSCrossRefGoogle Scholar
- 33.A. Rosig, Anal. Chem. 47, 592A (1975)CrossRefGoogle Scholar
- 34.A. Mandelis, Y.C. Teng, B.S.H. Royce, J. Appl. Phys. 50, 7138 (1979)ADSCrossRefGoogle Scholar
- 35.E. Marín, I. Riech, P. Díaz, J.J. Alvarado-Gil, R. Baquero, J.G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, M. Vargas, J. Appl. Phys. 83, 2604 (1998)ADSCrossRefGoogle Scholar