Advertisement

Statistical Analysis of the Accuracy of Solid Surface Tensions Calculated from Error-Included Contact Angle and Liquid Surface Tension Data by the Multi-component Approach

  • Ming WengEmail author
Article
  • 4 Downloads

Abstract

Both exclusive and synergetic effects of errors in contact angle (CAEs) and liquid surface tension data (LSTEs) on the accuracy and statistics of solid surface tension components and parameters (SSTCPs)/square roots of SSTCPs (SQSSTCPs) were investigated. The calculations were done by Monte Carlo simulations covering the whole ranges of CAs or SSTCPs that can be determined by the most widely used liquid triplets. The results showed that on most part of valid domains the multi-component approach determined SSTCPs/SQSSTCPs at moderate accuracy even when both input errors were involved. However, the approach should be applied with caution on domains where the relative-root-mean-square errors of SSTCPs were higher than 20 % due to the reduced accuracy and skewed distributions of SSTCPs which made sample mean no longer a preferred measure of central tendency of the distribution. The results revealed the necessity of statistical consideration in evaluation and application of the multi-component approach.

Keywords

Contact angle Multi-component approach Statistical analysis Surface tension components and parameters 

Notes

Acknowledgments

The author thanks the support from Zhejiang Top Priority Discipline of Textile Science and Engineering (No. 2013YXQN05 and No. 2015YXQN08), National Natural Science Foundation of China (Grant No. 11501513), and Zhejiang Province Public Technology Application Research Project (Grant No. LGF18C160002).

Compliance with Ethical Standards

Conflict of interest

The author declares no conflict of interest.

References

  1. 1.
    C.J. Van Oss, M.K. Chaudhury, R.J. Good, J. Adv. Colloid Interface Sci. 28, 35 (1987)CrossRefGoogle Scholar
  2. 2.
    C.J. Van Oss, R.J. Good, M.K. Chaudhury, Langmuir 4, 884 (1988)CrossRefGoogle Scholar
  3. 3.
    C.J. Van Oss, M.K. Chaudhury, R.J. Good, Chem. Rev. 88, 927 (1988)CrossRefGoogle Scholar
  4. 4.
    R.J. Good, C.J. van Oss, in Modern Approach to Wettability: Theory and Applications, ed. by M.E. Schrader, G. Loeb (Plenum Press, New York, 1995), pp. 1–28Google Scholar
  5. 5.
    N.K. Adam, Nature 180, 809 (1957)ADSCrossRefGoogle Scholar
  6. 6.
    F.M. Fowkes, J. Phys. Chem. 66, 382 (1962)CrossRefGoogle Scholar
  7. 7.
    M. Weng, Q. Shen, J. Adhes. Sci. Technol. 27, 2571 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Weng, Q. Shen, J. Adhes. Sci. Technol. 28, 2248 (2014)CrossRefGoogle Scholar
  9. 9.
    L.H. Lee, Langmuir 12, 1681 (1996)CrossRefGoogle Scholar
  10. 10.
    S. Qing, Langmuir 16, 4394 (2000)CrossRefGoogle Scholar
  11. 11.
    C. Della Volpe, S. Siboni, J. Adhes. Sci. Technol. 14, 235 (2000)CrossRefGoogle Scholar
  12. 12.
    C. Della Volpe, D. Maniglio, S. Siboni, M. Morra, J. Adhes. Sci. Technol. 17, 1477 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Della Volpe, D. Maniglio, M. Brugnara, S. Siboni, M. Morra, J. Colloid Interface Sci. 271, 434 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    T. Białopiotrowicz, J. Adhes. Sci. Technol. 21, 1539 (2007)CrossRefGoogle Scholar
  15. 15.
    T. Białopiotrowicz, J. Adhes. Sci. Technol. 23, 799 (2009)CrossRefGoogle Scholar
  16. 16.
    C. Della Volpe, S. Siboni, in Acid-Base Reactions: Relevance to Adhesion Science and Technology, vol. 2, ed. by K.L. Mittal (Zeist, VSP, 2000), pp. 55–90Google Scholar
  17. 17.
    F.J. Massey, J. Am. Stat. Assoc. 46, 68 (1951)CrossRefGoogle Scholar
  18. 18.
    L.H. Miller, J. Am. Stat. Assoc. 51, 111 (1956)CrossRefGoogle Scholar
  19. 19.
    G. Marsaglia, W.W. Tsang, J. Wang, J. Stat. Softw. 8, 1 (2003)Google Scholar
  20. 20.
    P.H. Kvam, B. Vidakovic, Non-parametric Statistics with Application to Science and Engineering (Wiley, New York, 2007), pp. 86–89CrossRefGoogle Scholar
  21. 21.
    D.N. Joanes, C.A. Gill, J. R. Stat. Soc. D Stat. 47, 183 (1998)CrossRefGoogle Scholar
  22. 22.
    R.J. Larsen, M.L. Marx, An Introduction to Mathematical Statistics and Its Applications, 5th edn. (Pretice Hall, Boston, 2012)zbMATHGoogle Scholar
  23. 23.
    M.M. Ali, J. Am. Stat. Assoc. 69, 543 (1974)CrossRefGoogle Scholar
  24. 24.
    P.H. Westfall, Am. Stat. 68, 191 (2014)CrossRefGoogle Scholar
  25. 25.
    R.J. Good, J. Adhes. Sci. Technol. 6, 1269 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials and TextilesZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  2. 2.National and Local Joint Engineering Laboratory for Textile Fiber Materials and Processing TechnologyZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China

Personalised recommendations