The Magneto-Dielectric Anisotropy Effect in the Oil-Based Ferrofluid

  • Štefan HardoňEmail author
  • Jozef Kúdelčík
  • Emil Jahoda
  • Mária Kúdelčíková


The dielectric parameters of an oil-based ferrofluid with magnetic nanoparticles were measured in combination with a magnetic and electric field. Three types of measurements were carried out over wide frequency ranges from 10 mHz to 2 MHz, at various temperatures, using a capacitance method. The magneto-dielectric effect of the dissipation factor (tan \(\delta \)) was observed for constant magnetic flux density of value 200 mT. In a magnetic field, the interaction between the magnetic field and the magnetic moments of nanoparticles leads to the aggregation of magnetic nanoparticles into various structures. In these structures were rearranged charges around nanoparticles which had an influence on their dielectric parameters. These parameters were also measured over a linear increase and decrease of the magnetic flux density to 200 mT. The dependence of the real part of a complex dielectric constant and tan \(\delta \) at constant magnetic flux density in dependence on the angle with the electric field (anisotropy) were also measured. These parameters were changed linearly with increasing angle and dependent on the temperature. From the monotonic change of studied parameters with angle resulted that thin chains of nanoparticles were created in the ferrofluid.


Dielectric spectroscopy Ferrofluid Nanoparticles 



This work was supported by VEGA project 1 / 0510 / 17 and the \( R \& D\) operational program Centrum of excellence of power electronics systems and materials for their components, No. OPVaV-2008 / 2.1 / 01-SORO, ITMS 26220120003 funded by European Community.


  1. 1.
    V. Segal, K. Raj, Indian J. Eng. Mater. Sci. 5, 146 (1998)Google Scholar
  2. 2.
    S. Odenbach, Colloids Surf. A Physicochem. Eng. Asp. 217, 171 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Liu, L. Zhou, G. Wu, Y. Zhao, P. Liu, Q. Peng, IEEE Trans. Dielectr. Electr. Insul. 19, 510 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Scherer, N. Figueiredo, Braz. J. Phys. 35, 718 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    D. Shi, in NanoScience in Biomedicine. Springer, ISBN 978-3-540-49660-l (2009)Google Scholar
  6. 6.
    D.K. Yi, G.C. Papaefthzmiou, in Nanobiomaterials Development ANS Application. ISBN 13: 978-1-4398-7642-8 (2013)Google Scholar
  7. 7.
    K. Zhao, K. He, Phys. Rev. B 74, 205319 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    P. Zukowski, T.N. Koltunowicz, V. Bondariev, A.K. Fedotov, J.A. Fedotova, J. Alloys Compd. 683, 62 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Wang, A Study of the Electrical Polarizability of Colloidal Particles in Liquid Suspensions, Theses and Dissertations, vol. 1096 (2012)Google Scholar
  10. 10.
    R. Totoreanu, I. Malaescu, Roman. Rep. Phys. 66, 801 (2014)Google Scholar
  11. 11.
    M. Rajňak, J. Kurimsky, B. Dolnik, K. Marton, L. Tomčo, A. Taculescu, L. Vekas, J. Kováč, I. Vavra, J. Tothova, P. Kopčanský, M. Timko, J. Appl. Phys. 114, 034313 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M. Rajňak, B. Dolnik, J. Kurimsky, R. Cimbala, P. Kopčanský, M. Timko, J. Chem. Phys. 146, 014704 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    P. Kopčanský, P. Marton, M. Koneracká, M. Timko, I. Potočová, J. Magn. Magn. Mater. 2377, 272 (2004)Google Scholar
  14. 14.
    J. Kúdelčík, P. Bury, P. Kopčanský, M. Timko, Phys. Proc. 9, 78 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Lee, W.H. Lee, S.H. Lee et al., Mater. Res. Bull. 47, 2984 (2012)CrossRefGoogle Scholar
  16. 16.
    V. Polunin, Acoustics of Nanodispersed Magnetic Fluids (CRC Press, Boca Raton, 2015)CrossRefGoogle Scholar
  17. 17.
    A. Józefczak, T. Hornowski, A. Skumiel, Int. J. Thermophys. 32, 795 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    J. Kúdelčík, P. Bury, P. Kopčanský, M. Timko, J. Magn. Magn. Mater. 388, 28 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    J. Miao, M. Dong, M. Ren, X. Wu, L. Shen, H. Wang, J. Appl. Phys. 113, 204103 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A. Spanoudaki, R. Pelster, J. Magn. Magn. Mater. 252, 71 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, A. Serghei, J. Chem. Phys. 142, 194703 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    A. Mailfert, B. Nahounou, IEEE Trans. Magn. 16, 254 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    I. Malaescu, C.N. Marin, J. Colloid Interface Sci. 251, 73 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    A. Karimi, M. Goharkhah, M. Ashjaee et al., Int. J. Thermophys. 36, 2720 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    G.A. Schwarz, J. Phys. Chem. 66, 2636 (1962)CrossRefGoogle Scholar
  26. 26.
    J. Kúdelčík, Š. Hardoň, L. Varačka, Acta Phys. Pol. A 131, 931 (2017)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    S. Taketomi, Jordan J. Phys. 4, 1 (2011)Google Scholar
  29. 29.
    A. Skumiel, J. Phys. D Appl. Phys. 37, 3073 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    K. Parekh, J. Patel, R.V. Upadhyay, Ultrasonics 60, 126 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Štefan Hardoň
    • 1
    Email author
  • Jozef Kúdelčík
    • 1
  • Emil Jahoda
    • 1
  • Mária Kúdelčíková
    • 2
  1. 1.Department of Physics, Faculty of Electrical EngineeringUniversity of ŽilinaZilinaSlovakia
  2. 2.Department of Structural Mechanics and Applied Mathematics, Faculty of Civil EngineeringUniversity of ŽilinaZilinaSlovakia

Personalised recommendations