Binary Diffusion Coefficients for Gas Mixtures of Propane with Methane and Carbon Dioxide Measured in a Loschmidt Cell Combined with Holographic Interferometry

  • Pouria Zangi
  • Michael H. Rausch
  • Andreas P. FröbaEmail author


Binary diffusion coefficients D12 for the molecular gas systems propane–methane (C3H8–CH4) and propane–carbon dioxide (C3H8–CO2) have been measured with a Loschmidt cell combined with holographic interferometry at (293 and 313) K, between (0.05 and 0.5) MPa, and for different mixture compositions. Improved experimental and evaluation procedures already validated for the noble-gas system helium–krypton have been successfully adapted for the molecular gas systems. For the investigated mixtures, adsorption–desorption processes are superimposed on the diffusion process and increase the achievable uncertainties. This hinders reliable conclusions regarding a concentration dependency of the diffusion coefficient. D12 clearly increases with increasing temperature and decreasing pressure. At the same pressure, temperature, and C3H8 mole fraction, the diffusion coefficient is larger for C3H8–CH4 than for C3H8–CO2. For both systems, the presented diffusion coefficients are in reasonable agreement with available literature data. In particular, the pressure-dependent trend and the absolute values of D12 at a given temperature match with recent theoretical data based on ab initio calculations in the zero-density limit for both systems.


Binary diffusion coefficient Carbon dioxide Holographic interferometry Loschmidt cell Methane Propane 



This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through funding the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative and via the project Grants FR 1709/12-1 and FR 1709/13-1.


  1. 1.
    E. Hendriks, G.M. Kontogeorgis, R. Dohrn, J.C. de Hemptinne, I.G. Economou, L.F. Zilnik, V. Vesovic, Ind. Eng. Chem. Res. 49, 11131 (2010)CrossRefGoogle Scholar
  2. 2.
    W.S. McGivern, J.A. Manion, Combust. Flame 159, 3021 (2012)CrossRefGoogle Scholar
  3. 3.
    N.J. Brown, L.A.J. Bastien, P.N. Price, Prog. Energy Combust. Sci. 37, 565 (2011)CrossRefGoogle Scholar
  4. 4.
    N.J. Brown, K.L. Revzan, Int. J. Chem. Kinet. 37, 538 (2005)CrossRefGoogle Scholar
  5. 5.
    M.S.A. Perera, Energy Fuels 31, 10324 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Mukherjee, S. Misra, Earth Sci. Rev. 179, 392 (2018)CrossRefGoogle Scholar
  7. 7.
    R. Hellmann, E. Bich, E. Vogel, J. Chem. Phys. 128, 9 (2008)Google Scholar
  8. 8.
    R. Hellmann, J. Chem. Eng. Data 63, 246 (2018)CrossRefGoogle Scholar
  9. 9.
    R. Hellmann, J. Chem. Phys. 146, 8 (2017)Google Scholar
  10. 10.
    R. Hellmann, Chem. Phys. Lett. 613, 133 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    L. Wolff, P. Zangi, T. Brands, M.H. Rausch, H.-J. Koß, A.P. Fröba, A. Bardow, Int. J. Thermophys. 39, 133 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    L. Wolff, P. Zangi, T. Brands, M.H. Rausch, H.-J. Koß, A.P. Fröba, A. Bardow, Int. J. Thermophys. 39, 132 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kugler, M.H. Rausch, A.P. Froba, Int. J. Thermophys. 36, 3169 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    T. Kugler, B. Jager, E. Bich, M.H. Rausch, A.P. Froba, Int. J. Thermophys. 34, 47 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 16 (2011)CrossRefGoogle Scholar
  16. 16.
    J.H. Dymond, E.B. Smith, The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation (Clarendon Press, Oxford, 1980)Google Scholar
  17. 17.
    R.D. Miranda, D.B. Robinson, H. Kalra, J. Chem. Eng. Data 21, 62 (1976)CrossRefGoogle Scholar
  18. 18.
    E. Lemmon, M. Huber, M. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2013)Google Scholar
  19. 19.
    M. Jaeschke, Int. J. Thermophys. 8, 81 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    X.-J. Feng, Q. Liu, M.-X. Zhou, Y.-Y. Duan, J. Chem. Eng. Data 55, 3400 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Baranski, E. Bich, E. Vogel, J.K. Lehmann, Int. J. Thermophys. 24, 1207 (2003)CrossRefGoogle Scholar
  22. 22.
    A.D. Buckingham, C. Graham, Proc. R. Soc. Lond. Ser. A 337, 275 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    S. Weissman, J. Chem. Phys. 40, 3397 (1964)ADSCrossRefGoogle Scholar
  24. 24.
    M. Trautz, K.G. Sorg, Ann. Phys. 402, 81 (1931)CrossRefGoogle Scholar
  25. 25.
    M. Trautz, W. Müller, Ann. Phys. 414, 353 (1935)CrossRefGoogle Scholar
  26. 26.
    G.T.-H. Chang, Diffusion in dilute and moderately dense gases by a perturbation technique. Ph.D. thesis, Rice University, Houston, 1966Google Scholar
  27. 27.
    Y. Abe, J. Kestin, H.E. Khalifa, W.A. Wakeham, Phys. A 93, 155 (1978)CrossRefGoogle Scholar
  28. 28.
    S. Gotoh, M. Manner, J.P. Sorensen, W.E. Stewart, J. Chem. Eng. Data 19, 169 (1974)CrossRefGoogle Scholar
  29. 29.
    F.T. Wall, G.A. Kidder, J. Phys. Chem. 50, 235 (1946)CrossRefGoogle Scholar
  30. 30.
    M. Trautz, F. Kurz, Ann. Phys. 401, 981 (1931)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Advanced Optical Technologies – Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations