Pyroelectric Property of Binary Nitrides (AlN, GaN and InN)
- 40 Downloads
Abstract
The pyroelectric (PY) property of binary nitrides (AlN, GaN and InN) has been explored theoretically. The spontaneous and piezoelectric (PZ) polarization modifies the thermal conductivity of these nitrides. The thermal conductivities as a function of temperature including and excluding the polarization mechanism (kp and k) predict a transition temperature (Tp) between primary and secondary PY effects. Below Tp, thermal conductivity kp is lower than k. This is due to negative thermal expansion in binary nitrides. Above Tp, kp is greater than k. kp is significantly contributed by PZ polarization due to thermal expansion which is the reason of secondary PY effect. The transition temperature Tp for AlN, GaN and InN has been predicted as 100 K, 70 K and 60 K, respectively. This study suggests that thermal conductivity study can reveal PY property in semiconductors.
Keywords
III–V Binary nitride Built-in polarization Pyroelectric coefficient Thermal expansion Thermal propertyList of Symbols
- BIP
Built-in polarization
- \( k_{p} \)
Thermal conductivity including polarization
- \( k \)
Thermal conductivity excluding polarization
- \( T_{p} \)
Transition temperature
- \( \gamma \)
Pyroelectric coefficient
- \( \gamma^{p} \)
Primary pyroelectric coefficient
- \( \gamma^{s} \)
Secondary pyroelectric coefficient
- \( \theta_{D} \)
Debye temperature
- \( \theta_{E} \)
Einstein temperature
- \( \alpha_{i} \)
Thermal expansion coefficients
- \( C_{V} \)
Specific heat capacity at constant volume
- \( v \)
Phonon group velocity
- \( \tau_{c} \)
Relaxation time
- \( P \)
Total polarization
- \( P^{sp} \)
Spontaneous polarization
- \( P^{pz} \)
Piezoelectric polarization
- \( \,E \)
BIP field
- \( V_{0} \)
Unit cell volume
- \( C_{44} \)
Elastic constant
- \( C_{44,\,p} \)
Elastic constant including polarization
Notes
Acknowledgement
Author BKS acknowledges Science and Engineering Research Board, Government of India, for financial support (Grant No. EMR/2016/001019).
References
- 1.H. Morkoc, Nitride Semiconductor Devices (Wiley, Weinheim, 2013)CrossRefGoogle Scholar
- 2.J. Wu, J. Appl. Phys. 106, 011101 (2009)ADSCrossRefGoogle Scholar
- 3.F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R10024 (1997)ADSCrossRefGoogle Scholar
- 4.F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 63, 193201 (2001)ADSCrossRefGoogle Scholar
- 5.H. Morkoc, S.N. Mohammad, Science 267, 51 (1995)ADSCrossRefGoogle Scholar
- 6.S.C. Jain, M. Willander, J. Narayan et al., J. Appl. Phys. 87, 965 (2000)ADSCrossRefGoogle Scholar
- 7.M.-A. Dubois, P. Muralt, Appl. Phys. Lett. 74, 3032 (1999)ADSCrossRefGoogle Scholar
- 8.A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Appl. Phys. Lett. 69, 3254 (1996)ADSCrossRefGoogle Scholar
- 9.Shur, A.D. Bykhovski, R. Gaska, MIJ-NSR 4S1, Art. G1.6 (1999)Google Scholar
- 10.W.S. Yan, R. Zhang, X.Q. Xiu et al., Appl. Phys. Lett. 90, 212102 (2007)ADSCrossRefGoogle Scholar
- 11.V. Fuflyigin, E. Salley, A. Osinsky et al., Appl. Phys. Lett. 77, 3075 (2000)ADSCrossRefGoogle Scholar
- 12.V.K. Novik, N.D. Gavrilova, Phys. Solid State 42, 991 (2000)ADSCrossRefGoogle Scholar
- 13.R. Gaska, J. Yang, A. Osinsky et al., Appl. Phys. Lett. 71, 3673 (1997)ADSCrossRefGoogle Scholar
- 14.Shur, A.D. Bykhovski, R. Gaska, MRS Int. J. Nitride Semicond. Res. 4S1, G1.6 (1999)Google Scholar
- 15.O. Ambacher, J. Majewski, C. Miskys et al., J. Phys. Condens. Matter 14, 3399 (2002)ADSCrossRefGoogle Scholar
- 16.C. Ren, Mater. Sci. Technol. 32, 418 (2016)Google Scholar
- 17.F. Bernardini, V. Fiorentini, Appl. Surf. Sci. 166, 23 (2000)ADSCrossRefGoogle Scholar
- 18.V.N. Davydov, Russ. Phys. J. 57, 1648 (2015)CrossRefGoogle Scholar
- 19.J. Liu, M.V. Fernandez-Serra, P.B. Allen, Phys. Rev. B 93, 081205 (2016)ADSCrossRefGoogle Scholar
- 20.A.D. Bykhovski, V.V. Kaminski, M.S. Shur et al., Appl. Phys. Lett. 69, 3254 (1999)ADSCrossRefGoogle Scholar
- 21.S. Jachalke, P. Hofmann, G. Leibiger et al., Appl. Phys. Lett. 109, 142906 (2016)ADSCrossRefGoogle Scholar
- 22.N. Cho, Y. Poplavko, S.J. Noh, J. Korean Phys. Soc. 42, 803 (2003)Google Scholar
- 23.W. Yan, R. Zhang, Z. Xie et al., Appl. Phys. Lett. 94, 242111 (2009)ADSCrossRefGoogle Scholar
- 24.J. Zook, S.T. Liu, J. Appl. Phys. 49, 4604 (1978)ADSCrossRefGoogle Scholar
- 25.T.B. Bahder, R. Tober, J. Bruno, Superlattice Microstruct. 14, 149 (1993)ADSCrossRefGoogle Scholar
- 26.B. Danilchenko, T. Paszkiewicz, A. Jezowski et al., Appl. Phys. Lett. 89, 061901 (2006)ADSCrossRefGoogle Scholar
- 27.S.K. Sahoo, B.K. Sahoo, S. Sahoo, J. Appl. Phys. 114, 163501 (2013)ADSCrossRefGoogle Scholar
- 28.G. Hansdah, B.K. Sahoo, J. Phys. Chem. Solid. 117, 111 (2018)ADSCrossRefGoogle Scholar
- 29.J. Zou, D. Kotchetkov, A.A. Balandin et al., J. Appl. Phys. 92, 2534 (2002)ADSCrossRefGoogle Scholar
- 30.A.X. Levander, T. Tong, K.M. Yu et al., Appl. Phys. Lett. 98, 012108 (2011)ADSCrossRefGoogle Scholar
- 31.G. Slack, L. Schowalter, D. Morelli et al., J. Cryst. Growth 246, 287 (2002)ADSCrossRefGoogle Scholar
- 32.A. Jezowski, B. Danilchenko, M. Bockowski et al., Solid State Commun. 128, 69 (2003)ADSCrossRefGoogle Scholar
- 33.D. Kotchetkov, J. Zou, A.A. Balandin et al., Appl. Phys. Lett. 79, 4316 (2001)ADSCrossRefGoogle Scholar
- 34.B. Liao, Phys. Rev. Lett. 114, 115901 (2015)ADSCrossRefGoogle Scholar
- 35.G. Tang, J. Appl. Phys. 110, 046102 (2011)ADSCrossRefGoogle Scholar
- 36.W. Wan, J. Phys.: Condens. Matter 24, 295402 (2012)Google Scholar
- 37.A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J. Appl. Phys. 100, 023522 (2006)ADSCrossRefGoogle Scholar
- 38.M. Balkanski, R.F. Wallis, Semiconductor Physics and Applications (Oxford University Press, New York, 2000)Google Scholar
- 39.H. KrÄoncke, S. Figge, B.M. Epelbaum, D. Hommel, Acta Phys. Pol. A 114, 1193 (2008)ADSCrossRefGoogle Scholar
- 40.S.N. Ivanov, P.A. Popov, G.V. Egorov, A.A. Sidorov, B.I. Kornev, L.M. Zhukova, V.P. Ryabov, Phys. Solid State 39, 81 (1997)ADSCrossRefGoogle Scholar
- 41.C. Roder, S. Einfeldt, S. Figge, D. Hommel, Phys. Rev. B 72, 085218 (2005)ADSCrossRefGoogle Scholar
- 42.M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, S. Porowski, T.D. Moustakas, J. Appl. Phys. 76, 4909 (1994)ADSCrossRefGoogle Scholar
- 43.R.R. Reeber, K. Wang, J. Mater. Res. 15, 40 (2000)ADSCrossRefGoogle Scholar
- 44.L. Xu, R. Wang, X. Yang, H. Yan, J. Appl. Phys. 110, 043528 (2011)ADSCrossRefGoogle Scholar
- 45.W. Paszkowicz, R. Cerny, S. Krukowski, Powder Diffr. 18, 114 (2003)ADSCrossRefGoogle Scholar
- 46.K. Wang, R.R. Reeber, Appl. Phys. Lett. 79, 1602 (2001)ADSCrossRefGoogle Scholar
- 47.S. Figge, H. Kroncke, D. Hommel, B.M. Epelbaum, Appl. Phys. Lett. 94, 101915 (2009)ADSCrossRefGoogle Scholar
- 48.A. Jezowski, O. Churiukova, J. Mucha et al., Mater. Res. Express 2, 085902 (2015)ADSCrossRefGoogle Scholar
- 49.L. Zhu, H. Luo, Theor. Appl. Mech. Lett. 6, 277–281 (2016)CrossRefGoogle Scholar
- 50.W. Liu, A.A. Balandin, J. Appl. Phys. 97, 123705 (2005)ADSCrossRefGoogle Scholar