Advertisement

Pyroelectric Property of Binary Nitrides (AlN, GaN and InN)

  • G. Hansdah
  • Bijoy K. SahooEmail author
Article
  • 40 Downloads

Abstract

The pyroelectric (PY) property of binary nitrides (AlN, GaN and InN) has been explored theoretically. The spontaneous and piezoelectric (PZ) polarization modifies the thermal conductivity of these nitrides. The thermal conductivities as a function of temperature including and excluding the polarization mechanism (kp and k) predict a transition temperature (Tp) between primary and secondary PY effects. Below Tp, thermal conductivity kp is lower than k. This is due to negative thermal expansion in binary nitrides. Above Tp, kp is greater than k. kp is significantly contributed by PZ polarization due to thermal expansion which is the reason of secondary PY effect. The transition temperature Tp for AlN, GaN and InN has been predicted as 100 K, 70 K and 60 K, respectively. This study suggests that thermal conductivity study can reveal PY property in semiconductors.

Keywords

III–V Binary nitride Built-in polarization Pyroelectric coefficient Thermal expansion Thermal property 

List of Symbols

BIP

Built-in polarization

\( k_{p} \)

Thermal conductivity including polarization

\( k \)

Thermal conductivity excluding polarization

\( T_{p} \)

Transition temperature

\( \gamma \)

Pyroelectric coefficient

\( \gamma^{p} \)

Primary pyroelectric coefficient

\( \gamma^{s} \)

Secondary pyroelectric coefficient

\( \theta_{D} \)

Debye temperature

\( \theta_{E} \)

Einstein temperature

\( \alpha_{i} \)

Thermal expansion coefficients

\( C_{V} \)

Specific heat capacity at constant volume

\( v \)

Phonon group velocity

\( \tau_{c} \)

Relaxation time

\( P \)

Total polarization

\( P^{sp} \)

Spontaneous polarization

\( P^{pz} \)

Piezoelectric polarization

\( \,E \)

BIP field

\( V_{0} \)

Unit cell volume

\( C_{44} \)

Elastic constant

\( C_{44,\,p} \)

Elastic constant including polarization

Notes

Acknowledgement

Author BKS acknowledges Science and Engineering Research Board, Government of India, for financial support (Grant No. EMR/2016/001019).

References

  1. 1.
    H. Morkoc, Nitride Semiconductor Devices (Wiley, Weinheim, 2013)CrossRefGoogle Scholar
  2. 2.
    J. Wu, J. Appl. Phys. 106, 011101 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R10024 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 63, 193201 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    H. Morkoc, S.N. Mohammad, Science 267, 51 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    S.C. Jain, M. Willander, J. Narayan et al., J. Appl. Phys. 87, 965 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    M.-A. Dubois, P. Muralt, Appl. Phys. Lett. 74, 3032 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Appl. Phys. Lett. 69, 3254 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Shur, A.D. Bykhovski, R. Gaska, MIJ-NSR 4S1, Art. G1.6 (1999)Google Scholar
  10. 10.
    W.S. Yan, R. Zhang, X.Q. Xiu et al., Appl. Phys. Lett. 90, 212102 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    V. Fuflyigin, E. Salley, A. Osinsky et al., Appl. Phys. Lett. 77, 3075 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    V.K. Novik, N.D. Gavrilova, Phys. Solid State 42, 991 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    R. Gaska, J. Yang, A. Osinsky et al., Appl. Phys. Lett. 71, 3673 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Shur, A.D. Bykhovski, R. Gaska, MRS Int. J. Nitride Semicond. Res. 4S1, G1.6 (1999)Google Scholar
  15. 15.
    O. Ambacher, J. Majewski, C. Miskys et al., J. Phys. Condens. Matter 14, 3399 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    C. Ren, Mater. Sci. Technol. 32, 418 (2016)Google Scholar
  17. 17.
    F. Bernardini, V. Fiorentini, Appl. Surf. Sci. 166, 23 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    V.N. Davydov, Russ. Phys. J. 57, 1648 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Liu, M.V. Fernandez-Serra, P.B. Allen, Phys. Rev. B 93, 081205 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A.D. Bykhovski, V.V. Kaminski, M.S. Shur et al., Appl. Phys. Lett. 69, 3254 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    S. Jachalke, P. Hofmann, G. Leibiger et al., Appl. Phys. Lett. 109, 142906 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    N. Cho, Y. Poplavko, S.J. Noh, J. Korean Phys. Soc. 42, 803 (2003)Google Scholar
  23. 23.
    W. Yan, R. Zhang, Z. Xie et al., Appl. Phys. Lett. 94, 242111 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    J. Zook, S.T. Liu, J. Appl. Phys. 49, 4604 (1978)ADSCrossRefGoogle Scholar
  25. 25.
    T.B. Bahder, R. Tober, J. Bruno, Superlattice Microstruct. 14, 149 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    B. Danilchenko, T. Paszkiewicz, A. Jezowski et al., Appl. Phys. Lett. 89, 061901 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    S.K. Sahoo, B.K. Sahoo, S. Sahoo, J. Appl. Phys. 114, 163501 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    G. Hansdah, B.K. Sahoo, J. Phys. Chem. Solid. 117, 111 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    J. Zou, D. Kotchetkov, A.A. Balandin et al., J. Appl. Phys. 92, 2534 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    A.X. Levander, T. Tong, K.M. Yu et al., Appl. Phys. Lett. 98, 012108 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    G. Slack, L. Schowalter, D. Morelli et al., J. Cryst. Growth 246, 287 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    A. Jezowski, B. Danilchenko, M. Bockowski et al., Solid State Commun. 128, 69 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    D. Kotchetkov, J. Zou, A.A. Balandin et al., Appl. Phys. Lett. 79, 4316 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    B. Liao, Phys. Rev. Lett. 114, 115901 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    G. Tang, J. Appl. Phys. 110, 046102 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    W. Wan, J. Phys.: Condens. Matter 24, 295402 (2012)Google Scholar
  37. 37.
    A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J. Appl. Phys. 100, 023522 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M. Balkanski, R.F. Wallis, Semiconductor Physics and Applications (Oxford University Press, New York, 2000)Google Scholar
  39. 39.
    H. KrÄoncke, S. Figge, B.M. Epelbaum, D. Hommel, Acta Phys. Pol. A 114, 1193 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    S.N. Ivanov, P.A. Popov, G.V. Egorov, A.A. Sidorov, B.I. Kornev, L.M. Zhukova, V.P. Ryabov, Phys. Solid State 39, 81 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    C. Roder, S. Einfeldt, S. Figge, D. Hommel, Phys. Rev. B 72, 085218 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, S. Porowski, T.D. Moustakas, J. Appl. Phys. 76, 4909 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    R.R. Reeber, K. Wang, J. Mater. Res. 15, 40 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    L. Xu, R. Wang, X. Yang, H. Yan, J. Appl. Phys. 110, 043528 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    W. Paszkowicz, R. Cerny, S. Krukowski, Powder Diffr. 18, 114 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    K. Wang, R.R. Reeber, Appl. Phys. Lett. 79, 1602 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    S. Figge, H. Kroncke, D. Hommel, B.M. Epelbaum, Appl. Phys. Lett. 94, 101915 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    A. Jezowski, O. Churiukova, J. Mucha et al., Mater. Res. Express 2, 085902 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    L. Zhu, H. Luo, Theor. Appl. Mech. Lett. 6, 277–281 (2016)CrossRefGoogle Scholar
  50. 50.
    W. Liu, A.A. Balandin, J. Appl. Phys. 97, 123705 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsN. I. TRaipurIndia

Personalised recommendations