# Influence of Scattering Phase Function on Estimated Thermal Properties of Al_{2}O_{3} Ceramic Foams

- 61 Downloads

## Abstract

Open ceramic foams are usually constituted of three-dimensional networks with randomly interconnected solid struts and fluid within pores. The heat transport within this material can be understood as the coupling of conduction, convection as well as radiation. The cooperative control of different heat transfer mechanisms is critical to successful design and optimization of components working at high temperatures. An answer to this problem usually requires good knowledge and understanding of the corresponding thermal properties in a wide range of temperatures. In the present paper, an inverse identification method was developed to determine coupled thermal properties from transient thermal measurements at temperatures up to 900 K for full description of conduction/radiation heat transports of foam media with absorbing, emitting, and anisotropic scattering effects. The influence of postulated phase function on the identified equivalent extinction coefficient, scattering albedo, anisotropic scattering factor, and two-phase thermal conductivity was discussed for better understanding of thermal behavior within ceramic foams. The estimated thermal properties under each postulated phase function of the sample at transient temperature profiles were used to calculate equivalent thermal conductivities, which were then compared with the measured results at more than 1000 K. The accordance between them indicated that linear anisotropic scattering phase function demonstrates superiority in description of radiation behavior within Al_{2}O_{3} ceramic foam.

## Keywords

Anisotropic scattering Ceramic foams Inverse method Phase function Thermal properties## List of symbols

*C*Specific heat of the sample (J·kg

^{−1}·K^{−1})*g*Anisotropic scattering factor of phase function

- \( \tilde{g} \)
Equivalent scattering factor of phase function

*I*Total radiation intensity (W·m

^{−2})*I*_{b}Total blackbody radiation intensity (W·m

^{−2})- k
_{rad} Radiative thermal conductivity (W·m

^{−1}·K^{−1})*L*Thickness of ceramic foam sample (m)

*q*_{c}Conductive heat flux (W·m

^{−2})*q*_{r}Radiant heat flux (W·m

^{−2})*t*Time (s)

*T*Temperature (K)

*T*_{0}Initial temperature (K)

*T*_{cold}Cold surface temperature (K)

*T*_{hot}Hot surface temperature (K)

*x*Spatial coordinate through the sample thickness (m)

## Greek symbols

*β*Extinction coefficient (m

^{−1})*β*^{*}Weighted extinction coefficient (m

^{−1})- \( \tilde{\beta } \)
Equivalent extinction coefficient (m

^{−1})- \( \tilde{\varvec{\beta }}^{\varvec{ * }} \)
Weighted equivalent extinction coefficient (m

^{−1})*ε*_{1}Emissity of the upper bounding surface

*ε*_{2}Emissity of the lower bounding surface

*θ*Polar angle rad

- Θ
Scattering angle rad

*λ*_{two- phase}Two-phase thermal conductivity (W·m

^{−1}·K^{−1})- \( \tilde{\lambda }_{{two{ - }phase}} \)
Equivalent two-phase thermal conductivity (W·m

^{−1}·K^{−1})*μ*Cosine of the angle between

*x*-axis and direction of radiation propagation*μ*′Cosine of the angle between

*x*-axis and another direction of radiation*ρ*Density (kg·m

^{−3})*σ*Stefan–Boltzmann constant (W·m

^{−2}·K^{−4})*σ*_{a}Absorption coefficient (m

^{−1})*σ*_{s}Scattering coefficient (m

^{−1})- \( \sigma_{s}^{*} \)
Weighted scattering coefficient (m

^{−1})- Φ
Scattering phase function

- \( {\tilde{\varPhi}} \)
Equivalent scattering phase function

*ω*Scattering albedo

- \( \omega^{*} \)
Weighted scattering albedo

- \( \tilde{\omega } \)
Equivalent scattering albedo

- \( \tilde{\varvec{\omega }}^{\varvec{*}} \)
Weighted equivalent scattering albedo

## Notes

### Acknowledgements

This work was supported by Pre-research Key Laboratory Foundation of General Armament Department of China (Grant No. JZ20180035).

## References

- 1.A. Ortona, S. Gianella, D. Gaia, SIC foams for high temperature applications,
*in Advances in Bioceramics and Porous Ceramics IV: Ceramic Engineering and Science Proceedings*(2011), pp. 153–161Google Scholar - 2.W.G. Xu, H.T. Zhang, Z.M. Yang, J.S. Zhang, The effective thermal conductivity of three-dimensional reticulated foam materials. J. Porous Mater.
**16**, 65–71 (2009)CrossRefGoogle Scholar - 3.M. Wang, N. Pan, Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf.
**51**, 1325–1331 (2008)CrossRefGoogle Scholar - 4.M.A. Mendes, S. Ray, D. Trimis, A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures. Int. J. Heat Mass Transf.
**66**, 412–422 (2013)CrossRefGoogle Scholar - 5.M.A. Mendes, S. Ray, D. Trimis, An improved model for the effective thermal conductivity of open-cell porous foams. Int. J. Heat Mass Transf.
**75**, 224–230 (2014)CrossRefGoogle Scholar - 6.M.A. Mendes, S. Ray, D. Trimis, Evaluation of effective thermal conductivity of porous foams in presence of arbitrary working fluid. Int. J. Therm. Sci.
**79**, 260–265 (2014)CrossRefGoogle Scholar - 7.R. Singh, H.S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng.
**24**, 1841–1849 (2004)CrossRefGoogle Scholar - 8.R. Coquard, D. Baillis, Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater.
**57**, 5466–5479 (2009)CrossRefGoogle Scholar - 9.G.N. Dulnev, Heat transfer through solid disperse systems. J. Eng. Phys. Thermophys.
**9**, 275–279 (1965)CrossRefGoogle Scholar - 10.A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf.
**45**, 1017–1031 (2002)CrossRefGoogle Scholar - 11.L.R. Glicksmann, M.A. Schuetz,
*Low Density Cellular Plastics*(Chapman & Hall, London, 1994), pp. 104–152CrossRefGoogle Scholar - 12.R. Coquard, D. Rochais, D. Baillis, Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures. Fire Technol.
**48**, 699–732 (2012)CrossRefGoogle Scholar - 13.P. Ranut, On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models. Appl. Therm. Eng.
**101**, 496–524 (2016)CrossRefGoogle Scholar - 14.P. Kumar, F. Topin, J. Vicente, Determination of effective thermal conductivity from geometrical properties: application to open cell foams. Int. J. Therm. Sci.
**81**, 13–28 (2014)CrossRefGoogle Scholar - 15.P. Kumar, F. Topin, Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams. Appl. Therm. Eng.
**71**, 536–547 (2014)CrossRefGoogle Scholar - 16.B. Dietrich, G. Schell, E.C. Bucharsky, R. Oberacker, M.J. Hoffmann, W. Schabel, M. Kind, H. Martin, Determination of the thermal properties of ceramic sponges. Int. J. Heat Mass Transf.
**53**, 198–205 (2010)CrossRefGoogle Scholar - 17.J. Randrianalisoa, D. Baillis, C.L. Martin, R. Dendievel, Microstructure effects on thermal conductivity of open-cell foams generated from the Laguerree Voronoï tessellation method. Int. J. Therm. Sci.
**98**, 277–286 (2015)CrossRefGoogle Scholar - 18.C.Y. Zhao, T.J. Lu, H.P. Hodson, Thermal radiation in ultralight metal foams with open cells. Int. J. Heat Mass Transf.
**47**, 2927–2939 (2004)CrossRefGoogle Scholar - 19.L.R. Glicksman, J. Steward, The measurement of the morphology of closet cell which control the overall thermal conductivity, in
*Third Symposium on Insulation Materials: Testing and Applications*(ASTM, Quebec, 1997), pp. 307–334Google Scholar - 20.D. Doermann, J.F. Sacadura, Heat transfer in open cell foam. ASME J. Heat Transf.
**118**, 88–93 (1996)CrossRefGoogle Scholar - 21.J. Kuhn, H.P. Ebert, M.C. Arduini-Schuster, D. Büttner, J. Fricke, Thermal transport in polystyrene and polyurethane foam insulations. Int. J. Heat Mass Transf.
**35**, 1795–1801 (1992)CrossRefGoogle Scholar - 22.E. Placido, M.C. Arduini-Schuster, J. Kuhn, Thermal properties predictive model for insulating foams. Infrared Phys. Technol.
**46**, 219–231 (2005)ADSCrossRefGoogle Scholar - 23.R. Coquard, D. Baillis, D. Quenard, Radiative properties of expanded polystyrene foams. J. Heat Transf.
**131**, 012702.1–012702.10 (2009)Google Scholar - 24.C. Tseng, A.D. Swanson, R. Viskanta, R.L. Sikorski, M.Y. Chen, Effect of foam properties on radiative properties of open-cell silicon carbide foams. J. Quant. Spectrosc. Radiat. Transf.
**113**, 1503–1507 (2012)ADSCrossRefGoogle Scholar - 25.P. Parthasarathy, P. Habisreuther, N. Zarzalis, Identification of radiative properties of reticulated ceramic porous inert media using ray tracing technique. J. Quant. Spectrosc. Radiat. Transf.
**113**, 1961–1969 (2012)ADSCrossRefGoogle Scholar - 26.S. Cunsolo, M. Oliviero, W.M. Harris, A. Andreozzi, N. Bianco, W.K.S. Chiu, V. Naso, Monte Carlo determination of radiative properties of metal foams: comparison between idealized and real cell structures. Int. J. Therm. Sci.
**87**, 94–102 (2015)CrossRefGoogle Scholar - 27.B. Dietrich, T. Fischedick, S. Heissler, P. Weidler, C. Wöll, M. Kind, Optical parameters for characterization of thermal radiation in ceramic sponges—experimental results and correlation. Int. J. Heat Mass Transf.
**79**, 655–665 (2014)CrossRefGoogle Scholar - 28.T. Fischedick, M. Kind, B. Dietrich, High temperature two-phase thermal conductivity of ceramic sponges with stagnant fluid—experimental results and correlation including thermal radiation. Int. J. Therm. Sci.
**96**, 1–11 (2015)CrossRefGoogle Scholar - 29.R. Coquard, D. Rochais, D. Baillis, Modelling of the coupled conductive and radiative heat transfer in NiCrAl foams from phothothermal measurements and X-ray tomography. Spec. Top. Rev. Porous Media
**2**, 249–265 (2011)CrossRefGoogle Scholar - 30.R. Coquard, B. Rousseau, D. Baillis, H. Gomart, Investigations of the radiative properties of Al–NiP foams using tomographic images and stereoscopic micrographs. Int. J. Heat Mass Transf.
**55**, 1606–1619 (2012)CrossRefGoogle Scholar - 31.S. Cunsolo, R. Coquard, D. Baillis, Wilson.K.S. Chiu, Nicola. Bianco, Radiative properties of irregular open cell solid foams. Int. J. Therm. Sci.
**117**, 77–89 (2017)CrossRefGoogle Scholar - 32.B. Zeghondy, E. Iacona, J. Taine, Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI). Int. J. Heat Mass Transf.
**49**, 2810–2819 (2006)CrossRefGoogle Scholar - 33.B. Zeghondy, E. Iacona, J. Taine, Experimental and RDFI calculated radiative properties of a mullite foam. Int. J. Heat Mass Transf.
**49**, 3702–3707 (2006)CrossRefGoogle Scholar - 34.M. Tancrez, J. Taine, Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique. Int. J. Heat Mass Transf.
**47**, 373–383 (2004)CrossRefGoogle Scholar - 35.J. Petrasch, P. Wyss, A. Steinfeld, Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectrosc. Radiat. Transf.
**105**, 180–197 (2007)ADSCrossRefGoogle Scholar - 36.T.J. Hendricks, J.R. Howell, Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics. J. Heat Transf.
**118**, 79–87 (1996)CrossRefGoogle Scholar - 37.D. Baillis, M. Raynaud, J.F. Sacadura, Determination of spectral radiative properties of open cell foam: model validation. J. Thermophys. Heat Transf.
**14**, 137–143 (2000)CrossRefGoogle Scholar - 38.M.J. Hale, M.S. Bohn, Measurement of the radiative transport properties of reticulated alumina foams, in
*ASME/ASES Joint Solar Energy Conference, Washington DC (USA)*(1993), pp. 507–515Google Scholar - 39.P.F. Hsu, J.R. Howell, Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia. Exp. Heat Transf.
**5**, 293–313 (1992)ADSCrossRefGoogle Scholar - 40.R. Coquard, D. Rochais, D. Baillis, Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams. Int. J. Heat Mass Transf.
**52**, 4907–4918 (2009)CrossRefGoogle Scholar - 41.M. Grujicic, C.L. Zhao, S.B. Biggers, J.M. Kennedy, D.R. Morgan, Heat transfer and effective thermal conductivity analyses in carbon-based foams for use in thermal protection systems. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl.
**219**, 217–230 (2006)Google Scholar - 42.C.C. Tseng, R.L. Sikorski, R. Viskanta, M.Y. Chen, Effect of foam properties on heat transfer in high temperature open-cell foam inserts. J. Am. Ceram. Soc.
**95**, 2015–2021 (2012)CrossRefGoogle Scholar - 43.D.W. Marquardt, An algorithm for least-squares estimation of non-linear parameters. J. Soc. Ind. Appl. Math.
**11**, 431–441 (1963)CrossRefGoogle Scholar - 44.S.Y. Zhao, B.M. Zhang, S.Y. Du, An inverse analysis to determine conductive and radiative properties of a fibrous medium. J. Quant. Spectrosc. Radiat. Transf.
**110**, 1111–1123 (2009)ADSCrossRefGoogle Scholar - 45.K. Daryabeigi,
*Heat Transfer in High-Temperature Fibrous Insulation*. AIAA Paper 2002-3332Google Scholar - 46.M.F. Modest,
*Radiative Heat Transfer, International Edition*, 2nd edn. (McGraw Hill, New York, 2003), pp. 225–250Google Scholar - 47.E.M. Sparrow, R.D. Cess,
*Radiation Heat Transfer, Augmented edition*(McGraw-Hill, New York, 1978), pp. 255–271Google Scholar