Measurement of Directional Spectral Emissivity at High Temperatures

  • Y. M. Guo
  • S. J. Pang
  • Z. J. Luo
  • Y. ShuaiEmail author
  • H. P. Tan
  • H. Qi
20th Symposium on Thermophysical Properties
Part of the following topical collections:
  1. The 20th Symposium on Thermophysical Properties


Emissivity is a significant parameter to describe the thermal radiation characteristics of the objects. It has important applications in thermal control of spacecrafts, highly efficient use of solar energy, buildings’ energy insulation and saving, and so on. Besides, more attention is attached to selective control of thermal emission by using micro-/nanostructures. In this work, to measure directional spectral emissivity, a measurement facility is developed which includes a sample heater with temperature control, a blackbody source, mirror assembly and a Fourier transform infrared spectrometer with different detectors. A sample heater is designed, and by using ceramic electric heaters, samples can be heated up to 1400 K at a high heating speed. And a new kind of water-cooled surface of the sample heating unit is designed to reduce the error by reducing the thermal radiation from surface of the heating unit so that measurement accuracy is improved. An electro-controlling rotating stage is adopted, and measuring angle is up to 60°. A SiC wafer is used as the reference to test the directional spectral emissivity measurement facility, and uncertainty is estimated.


Directional emissivity High temperatures Measurement Spectra 



This work was supported by the National Natural Science Foundation of China (No. 51522601), the Chang Jiang Young Scholars Program of China (No. Q2016186) and the Program for New Century Excellent Talents in University (No. NCET-13-0173). Special thanks are given to the reviewers and people who suggest improvements in the experiment and the manuscript.


  1. 1.
    Z.M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, NewYork, 2007)Google Scholar
  2. 2.
    R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, NewYork, 2002)Google Scholar
  3. 3.
    M.F. Modest, Radiative Heat Transfer (Academic Press, San Diego, 2003)CrossRefGoogle Scholar
  4. 4.
    J. Baxter, Z. Bian, G. Chen, D. Danielson, M.S. Dresselhaus, A.G. Fedorov, T.S. Fisher, C.W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D.R. Rolison, T. Sands, L. Shi, D. Sholl, Y. Wu, Energy Environ. Sci. 2, 559 (2009)CrossRefGoogle Scholar
  5. 5.
    Z.M. Zhang, L.P. Wang, Int. J. Thermophys. 34, 2209 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    C.D. Wen, T.Y. Chai, Appl. Therm. Eng. 31, 2414 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Osiander, S.L. Firebaugh, J.L. Champion, D. Farrar, M.A. Darrin, IEEE Sens. J. 4, 525 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    H. Li, S. Lu, W. Qin, X. Wu, Acta Astronaut. 136, 230 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    H. Demiryont, D. Moorehead, Sol. Energy Mater. Sol. Cells 93, 2075 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Bao, C. Yan, B. Wang, X. Fang, C.Y. Zhao, X. Ruan, Sol. Energy Mater. Sol. Cells 168, 78 (2017)CrossRefGoogle Scholar
  11. 11.
    J.R. Markham, K. Kinsella, R.M. Carangelo, C.R. Brouillette, M.D. Carangelo, P.E. Best, P.R. Solomon, Rev. Sci. Instrum. 64, 2515 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    P.J. Bonzani, E.H. Florczak, J.J. Scire, J.R. Markham, Rev. Sci. Instrum. 74, 3130 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    S. Bharadwaj, M. Modest, R. Riazzi, in ASME Heat Transfer Summer Conference, San Francisco, 2005, pp. 374–381Google Scholar
  14. 14.
    A.V. Prokhorov, L.M. Hanssen, S.N. Mekhontsev, in Conference on Thermosense XXVII, Kissimmee, 2006, pp. 620505Google Scholar
  15. 15.
    S.G. Kaplan, L.M. Hanssen, E.A. Early, M.E. Nadal, in Conference on Optical Diagnostic Methods for Inorganic Materials II, San Diego, 2000, ed. by L.M. Hanssen, pp. 53–61Google Scholar
  16. 16.
    L.M. Hanssen, S.N. Mekhontsev, V.B. Khromchenko, in Conference on Thermosense XXVI, Orlando, 2004, ed. by D. Burleigh, K. Cramer, G. Peacock, pp. 1–12Google Scholar
  17. 17.
    L.M. Hanssen, S.G. Kaplan, in 4th Oxford Conference on Spectroscopy, Davidson, 2003, ed. by A. Springsteen, M. Pointer, pp. 21–26Google Scholar
  18. 18.
    J. Ishii, A. Ono, in Conference on Optical Diagnostic Methods for Inorganic Materials II, San Diego, 2000, ed. by L.M. Hanssen, pp. 126–132Google Scholar
  19. 19.
    J. Ishii, A. Ono, Meas. Sci. Technol. 12, 2103 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Y.F. Zhang, J.M. Dai, Z.W. Wang, W.D. Pan, L. Zhang, Int. J. Thermophys. 34, 916 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Z.W. Wang, Y.M. Wang, Y. Liu, J.L. Xu, L.X. Guo, Y. Zhou, J.H. Ouyang, J.M. Dai, Curr. Appl. Phys. 11, 1405 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    C.Y. Niu, H. Qi, Y.T. Ren, L.-M. Ruan, Chin. Phys. B 25, 047801 (2016)CrossRefGoogle Scholar
  23. 23.
    L.P. Wang, S. Basu, Z.M. Zhang, J. Heat Trans-T ASME 134, 072701 (2012)CrossRefGoogle Scholar
  24. 24.
    L. Ibos, J.-P. Monchau, V. Feuillet, J. Dumoulin, P. Ausset, J. Hameury, B. Hay, in 13th Quantitative Infrared Thermography Conference, Gdansk, 2016, pp. 244–250Google Scholar
  25. 25.
    A. Adibekyan, C. Monte, M. Kehrt, B. Gutschwager, J. Hollandt, Int. J. Thermophys. 36, 283 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    C.P. Cagran, L.M. Hanssen, M. Noorma, A.V. Gura, S.N. Mekhontsev, Int. J. Thermophys. 28, 581 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations