Advertisement

A Model for Determining the Effective Thermal Conductivity of Porous Heterogeneous Materials

  • Ayse BicerEmail author
  • Filiz Kar
Article
  • 110 Downloads

Abstract

In this study, an algebraic equation is shown for determining thermal conductivity coefficient of a porous heterogeneous solid material with two components. This equation was developed based on the porosity of the material, ratio, density and thermal conductivities of its components. This equation was applied to the waste EPS aggregate and samples with cement or gypsum mixed binders. Packaging waste EPSs were collected, decomposed to particles of 0–3 mm diameter and mixed with each binder volumetrically in the ratios of 20 %, 40 %, 60 % and 80 % separately. Thermal conductivity coefficient of the samples was determined by using the hot wire method. The calculated values were 4.41 % to 26.04 % higher than the measured values in the samples with cement, and they were 5.79 % to 15.62 % higher than the measured values in the samples with gypsum. The equation was applied similarly to the samples with expanded clay and cement with pumice aggregates.

Keywords

Cement Expanded polystyrene Gypsum Porous material Thermal conductivity coefficient 

List of symbols

D1

Typical elementary cell size (particle diameter) (m)

D2

Typical pore size (m)

A

Surface (m2)

Q

Heat flux (W)

T

Temperature (K)

k

Thermal conductivity coefficient (W·m−1·K−1)

ϕ

Porosity (%)

ρ

Density (g·cm−3)

R

Electric resistance (m2 K·W−1)

θ

Dimensional ratio number

V

Total volume

Z

Volumetric percentage of EPS (%)

(1 − Z)

Volumetric percentage of binders (%)

h/L

Dimensional ratio

ME

Maxwell–Eucken

Subscript

cal

Calculated

exp

Experimental

eq

Equivalent

eff

Effective

s

Solid phase (material with zero porosity)

p

Pore

binder

Cement or gypsum

binder matrix

Cement or gypsum with 0 % porosity ratio

EPS

Expanded polystyrene

EPS matrix

Solid EPS (after milling and causing no porosity)

References

  1. 1.
    A.V. Luikov, A.G. Shashkov, L.L. Vasiliev, E. Fraiman, J. Int, Heat Mass Transf. 11, 117 (1968)CrossRefGoogle Scholar
  2. 2.
    G.N. Dulnev, D.P. Volkov, V.I. Malarev, J. Eng. Phys. Thermophys. 56, 281 (1989)CrossRefGoogle Scholar
  3. 3.
    D.A. Zumbrunnen, R. Viskanta, F.P. Incopera, Int. J. Heat Mass Transf. 29, 275 (1986)CrossRefGoogle Scholar
  4. 4.
    A. Benazzouk, O. Douzane, K. Mezreb, B. Laidoudi, M. Queneudec, Constr. Build. Mater. 22, 573 (2008)CrossRefGoogle Scholar
  5. 5.
    Y.E. Friman, Inzh. Fiz. Zh. 7, 73 (1964)Google Scholar
  6. 6.
    J. Wyrwal, A. Marynowicz, J. Swirska, Bauphysik 30, 320 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Wang, J.K. Carson, M.F. North, D.J. Cleland, Int. J. Heat Mass Transf. 49, 3075 (2006)CrossRefGoogle Scholar
  8. 8.
    R.P.A. Rocha, M.E. Cruz, Numer. Heat Transf. Part A Appl. 39, 179 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    G. Buonanno, A. Carotenuto, Numer. Heat Transf. Part A Appl. 37, 343 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    S. Whitaker, 1999 edition (Springer, Dordrecht, 1998)Google Scholar
  11. 11.
    U. Hornung (New York, Inc., New York, 1997)Google Scholar
  12. 12.
    J. François Mathieu-Potvin, Therm. Sci. 120, 400–426 (2017)CrossRefGoogle Scholar
  13. 13.
    E.E. Gonzo, J. Chem. Eng. 90, 299 (2002)CrossRefGoogle Scholar
  14. 14.
    K.S. Reddy, P. Karthikeyan, Heat Transf. Eng. 30, 998 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    G. Dogu, K. Murtezaoglu, T. Dogu, AIChE J. 35, 683 (1989)CrossRefGoogle Scholar
  16. 16.
    R. Demirbogga, A.K. Kan, Constr. Build. Mater. 35, 730 (2012)CrossRefGoogle Scholar
  17. 17.
    S.D. Babu, K.G. Babu, T.H. We, Cem. Concr. Res. 35, 1218 (2005)CrossRefGoogle Scholar
  18. 18.
    D. Bouvard, J.M. Chaix, R. Dendievel, A. Fazekas, J.M. Létang, G. Peix, D. Quenard, Cem. Concr. Res. 37, 1666 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Kaya, F. Kar, J. Appl. Math. Phys. 2, 310 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Kaya, F. Kar, in 19th Int. Conference (THERMO), 7–10 July, Budapest, Hungary (2015)Google Scholar
  21. 21.
    A. Kaya, F. Kar, Constr. Build. Mater. 105, 572 (2016)CrossRefGoogle Scholar
  22. 22.
    R.A. Sancho, A. Castillo, M.E. Macia, R. Corral, Adv. Mater. Res. 1051, 752 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Schackow, C. Effting, M.V. Folgueras, S. Güths, G.A. Mendes, Constr. Build. Mater. 57, 190 (2014)CrossRefGoogle Scholar
  24. 24.
    I.H. Ling, D.C.L. Teo, J. Civil Eng. 7, 361 (2013)Google Scholar
  25. 25.
    J. Seputyte-Jucike, A. Sezeman, M. Sinica, M. Kligys, S. Vaitkus, J. Civil Eng. Manag. 20, 581 (2014)CrossRefGoogle Scholar
  26. 26.
    B. Demirel, Constr. Build. Mater. 40, 306 (2013)CrossRefGoogle Scholar
  27. 27.
    A.G. Devecioglu, Y. Bicer, Period. Polytech. Civil Eng. 60, 45 (2014)CrossRefGoogle Scholar
  28. 28.
    Statistica for Windows 5.0, Computer program manual (StatSoft, Inc., 1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringFirat UniversityElazigTurkey

Personalised recommendations