Experimental Determination of Heat and Moisture Transport Properties of AAC in the Range of Subzero to Room Temperatures

  • Jan KočíEmail author
  • Jiří Maděra
  • Miloš Jerman
  • Robert Černý
20th Symposium on Thermophysical Properties
Part of the following topical collections:
  1. The 20th Symposium on Thermophysical Properties


Thermal and hygric parameters of porous building materials are often determined as single values only. Neglecting their dependence on temperature and moisture can though lead to higher uncertainties in hygrothermal and energy-related calculations. In this paper, thermal conductivity, specific heat capacity, water vapor diffusion permeability and moisture diffusivity of autoclaved aerated concrete are measured as functions of both temperature and moisture in the ranges characteristic for their application in building structures. Experimental results show temperature as a very significant factor affecting all parameters, but its combination with moisture in different forms is even more important. The combined effects of temperature and moisture are most remarkable for thermal conductivity and moisture diffusivity, which can vary within a range of two orders of magnitude. The water vapor diffusion permeability increases with decreasing temperature despite the decreasing amount of water vapor diffused through the sample. The specific heat capacity increases continuously with both temperature and moisture.


Autoclaved aerated concrete Moisture Moisture diffusivity Temperature Thermal conductivity Water vapor diffusion permeability 



This research has been financially supported by the Czech Science Foundation, under project No. 17-01365S.


  1. 1.
    Y.F. Pan, G.J. Xian, H. Li, J. Compos. Constr. 22, 04018011 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Abdul Hamid, P. Wallentén, Build. Environ. 123, 351 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Maljaee, B. Ghiassi, P.B. Lourenço, D.V. Oliveira, Compos. Struct. 147, 143 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Xin, Y. Liu, A. Mosallam, Y. Zhang, C. Wang, Constr. Build. Mater. 127, 237 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Feng, H. Janssen, Build. Environ. 99, 107 (2016)CrossRefGoogle Scholar
  6. 6.
    P.M. Patil, S. Roy, E. Momoniat, Int. J. Heat Mass Transf. 100, 428 (2016)CrossRefGoogle Scholar
  7. 7.
    Z. Pavlík, R. Černý, Int. J. Thermophys. 33, 1704 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Carmeliet, H. Hens, S. Roels, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, J. Therm. Envelope Build. Sci. 27, 277 (2004)CrossRefGoogle Scholar
  9. 9.
    J. Kruis, T. Koudelka, T. Krejčí, Math. Comput. Simulat. 80, 1578 (2010)CrossRefGoogle Scholar
  10. 10.
    V. Kočí, J. Kočí, J. Maděra, Z. Pavlík, X. Gu, W. Zhang, R. Černý, J. Build. Phys. 41, 497 (2018)CrossRefGoogle Scholar
  11. 11.
    W. Tian, N. Han, Cold Reg. Sci. Technol. 151, 314 (2018)CrossRefGoogle Scholar
  12. 12.
    V. Kočí, J. Maděra, M. Jerman, R. Černý, Int. J. Thermophys. 39, 75 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    J.J. Beaudoin, C. MacInnis, Cem. Concr. Res. 4, 139 (1974)CrossRefGoogle Scholar
  14. 14.
    A. Trník, L. Scheinherrová, T. Kulovaná, P. Reiterman, E. Vejmelková, R. Černý, Fire Mater. 41, 54 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Trník, I. Medveď, R. Černý, Cem. Wapno Beton 17, 363 (2012)Google Scholar
  16. 16.
    K. Zhou, L.H. Han, Eng. Struct. 165, 331 (2018)CrossRefGoogle Scholar
  17. 17.
    YTONG, product list (Xella Ltc, 2018), Accessed 12 June 2018
  18. 18.
    S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, J. Therm. Envelope Build. Sci. 27, 307 (2004)CrossRefGoogle Scholar
  19. 19.
    J. Drchalová, R. Černý, Int. Commun. Heat Mass Transf. 25, 109 (1998)CrossRefGoogle Scholar
  20. 20.
    ISO/EIC 98-3:2008 Evaluation of measurement data—guide to the expression of uncertainty in measurements, Joint Committee for Guides in Metrology, France (2008)Google Scholar
  21. 21.
    M. Jerman, M. Keppert, J. Výborný, R. Černý, Constr. Build. Mater. 41, 352 (2013)CrossRefGoogle Scholar
  22. 22.
    T.R. Marero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Engineering and Chemistry Faculty of Civil EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations