Advertisement

Nanospheres Containing Urea: Photothermic Properties

  • F. Mallon Mercado
  • E. San Martín Martinez
  • M. A. Aguilar-Méndez
  • A. Cruz-Orea
ICPPP 19
  • 11 Downloads
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

In the present research, nanospheres of chitosan (CS), maltodextrin, and sodium tripolyphosphate (STPP), loaded with urea, were synthesized by using an ionic gelation technique. In the nanosphere synthesis was used a central composite experimental design, obtaining nanospheres with an average size of 275 ± 32 nm and 27.5 mV zeta potential. The nanospheres were characterized by their hydrodynamic diameter, polydispersity index, nitrogen content, and thermal properties such as thermal diffusivity (α), effusivity (e), and conductivity (k); also melting temperature was obtained by differential scanning calorimetry. The thermal properties of nanospheres show that the sample with the smallest size has a thermal diffusivity value of (14.4 ± 0.4) × 10−8 m2·s−1 and a thermal conductivity value of (6.4 ± 0.1) × 10−1 W·m−1·K−1, and the obtained melting temperature was 157 °C. Higher concentrations of CS increase the values of these thermal properties, probably because chitosan interacts ionically with STPP forming a reticular network due to the opposite charges of both molecules.

Keywords

Biopolymers Ionic gelation Nanoencapsulation Thermal properties Urea 

Notes

Acknowledgments

F. Mallon Mercado is grateful for the scholarship program granted by the National Council of Sciences and Technology (CONACYT) and the Institutional Support for Research Incentive Grant (BEIFI). Authors also thank the partial financial support from CONACYT through the Project No. 241330. We also are grateful to Ing. Esther Ayala from Physics Department, CINVESTAV-IPN, for her technical support in developing the experiments of the present study.

References

  1. 1.
    L. F. Ifa, Estimaciones globales de las emisiones gaseosas de NH3, NO y N2O provenientes de las tierras agrícolas, Roma, 2004. http://www.fao.org/3/a-y2780s.pdf. Accessed 14 Nov 2017
  2. 2.
    L. Morgan, Temperatura nutriente, oxigênio e Pythium em hydroponics. Hydroponics homegrown inc. http://www.hydroponics.com. Accessed 01 Dec 2013
  3. 3.
    A. Shaviv, in Water Resources Quality, ed. by H. Rubin, U. Shamir, P. Nachtnebel, J. Fürst (Springer, Berlin, 2002), pp. 3–15CrossRefGoogle Scholar
  4. 4.
    M.E. Trenkel, Controlled-Release and Stabilized Fertilizers in Agriculture (International Fertilizer Industry Association, Paris, 1997), pp. 41–44Google Scholar
  5. 5.
    B. Azeem, K. KuShaari, Z.B. Man, A. Basit, T.H. Thanh, J. Control Release 181, 11 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Rodrigues, A.M.R. da Costa, A. Grenha, Carbohydr. Polym. 89, 282 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Grenha, M.E. Gomes, M. Rodrigues, V.E. Santo, J.F. Mano, N.M. Neves, R.L. Reis, J. Biomed. Mater. Res. A 92, 1265 (2010)Google Scholar
  8. 8.
    S. Saloko, P. Darmadji, B. Setiaji, Y. Pranoto, Food. Biosci. 7, 71 (2014)CrossRefGoogle Scholar
  9. 9.
    I. Walinga, J.J. Van Der Lee, V.J.G. Houba, W. Van Vark, I. Novozamsky, Plant Analysis Manual (Springer, Dordrecht, 1995), pp. 7–45Google Scholar
  10. 10.
    I. Delgadillo, A. Cruz-Orea, H. Vargas, A. Calderón, J.J. Alvarado-Gil, L.C.M. Miranda, Opt. Eng. 36, 343 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    A. Garcia-Quiroz, S.A. Tomás, H. Vargas, A. Cruz-Orea, L. Veleva, J.J. Alvarado-Gil, L.C.M. Miranda, Instrum. Sci. Technol. 26, 241 (1998)CrossRefGoogle Scholar
  12. 12.
    N.F. Leite, N. Cella, H. Vargas, L.C.M. Miranda, J. Appl. Phys. 61, 3025 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Mansanares, A.C. Bento, H. Vargas, N.F. Leite, L.C.M. Miranda, Phys. Rev. B 42, 4477 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    S.A. Tomás, A. Cruz-Orea, S. Stolik, R. Pedroza-Islas, D.L. Villagómez-Zavala, C. Gómez-Corona, Int. J. Thermophys. 25, 611 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    B. BriseñoTepepa, E. Marin, E. San Martín-Martinez, A. Cruz-Orea, Int. J. Thermophys. 30, 1591 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J.J.A. Flores-Cuautle, A. Cruz-Orea, E. Suaste-Gómez, Ferroelectrics 386, 36 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Caerels, C. Glorieux, J. Thoen, Rev. Sci. Instrum. 69, 2452 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    E. SanMartin-Martinez, M.A. Aguilar-Mendez, A. Cruz-Orea, A. García-Quiroz, Eur. Phys. J. Spec. Top. 153, 179 (2008)CrossRefGoogle Scholar
  19. 19.
    F.L. Mi, H.W. Sung, S.S. Shyu, C.C. Su, C.K. Peng, Polymer 44, 6521 (2003)CrossRefGoogle Scholar
  20. 20.
    B. Boruah, P.M. Saikia, R.K. Dutta, J. Photochem. Photobiol. A Chem. 245, 18 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Batalla Mayoral, A. Cuadros Moreno, E. San Martín-Martínez, Latin Am. J. Phys. Educ. 8, 4 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Politécnico Nacional - Centro de Investigación en Ciencia Aplicada y Tecnología AvanzadaMexico CityMéxico
  2. 2.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del IPNMexico CityMéxico

Personalised recommendations