Advertisement

Structural and Catalytic Properties of Co-doped Perovskite Oxide on Coal Combustion

  • Xin Cui
  • Jun Wang
  • Song Li
  • Yang Liu
Article
  • 69 Downloads

Abstract

In this paper, the structural and catalytic properties of co-doped perovskite oxide La0.8Ce0.2Mn1−xCoxO3 are investigated. First, coal combustion catalysts of mesoporous perovskite-type La0.8Ce0.2Mn1−xCoxO3 were prepared by using sol–gel method. The resulting powder was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller’s test (BET), and thermogravimetric analysis (TGA). Then, the results showed that after partially substituting La with Ce and substituting Mn with Co in LaMnO3, Ce occupied parts of the La site and Co occupied parts of the Mn site. As the substitution rate of Co increased, the pore diameter significantly decreased, and the specific surface area increased first and then decreased. Thirdly, thermogravimetric measurements and coal combustion constructed single-reaction model in the presence of the La0.8Ce0.2Mn1−xCoxO3 catalysis indicated that the presence of catalysts reduced the reaction initiation temperature (Teo), the maximum mass loss velocity temperature (Tmax), and the completion temperature of the main pyrolysis (Tf). The addition of 5 % La0.8Ce0.2Mn0.9Co0.1O3 to coal caused the reaction initiation temperature (Teo) to decrease by 34 °C compared with coal alone. Lastly, a distributed activation energy model of 5 % La0.8Ce0.2Mn0.9Co0.1O3 obtained an activation energy distribution curve. Results indicated that the activation energy of samples at the primary pyrolysis stage did not present a single peak value but mainly accumulated at 140–160 kJ, which could replace the mean activation energy of pyrolysis reaction. At the same time, frequency factor was not constant but presented a certain degree of linear correlation with activation energy, thereby indicating the presence of more than a single-reaction pyrolysis mechanism.

Keywords

Catalytic properties Co-doped perovskite oxide Composites Sol–gel chemistry 

Notes

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. 2014QNA20).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    S. Jaenicke, G.K. Chuah, J.Y. Lee et al., Environ. Monit. Assess. 19, 131–138 (1991)CrossRefGoogle Scholar
  2. 2.
    A. Baylet, S. Royer, P. Marécot et al., Appl. Catal. B Environ. 77, 237–247 (2008)CrossRefGoogle Scholar
  3. 3.
    I. Yamada, S. Yagi, Rev. High Press. Sci. Technol. 26, 247–252 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Xue, H. Miao, S. Sun, RSC Adv. 7, 5214–5221 (2017)CrossRefGoogle Scholar
  5. 5.
    R.J. Voorhoeve, D.W. Johnson Jr., J.P. Remeika et al., Science 195, 827–833 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mebrouki, T. Ouahrani, Ç.Y. Öztekin, Int. J. Thermophys. 37, 71 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    N.M. Panich, G.N. Pirogova, R.I. Korosteleva et al., Russ. Chem. Bull. 48, 694–697 (1999)CrossRefGoogle Scholar
  8. 8.
    N. Yamazoe, Y. Teraoka, Catal. Today 8, 175–199 (1990)CrossRefGoogle Scholar
  9. 9.
    J.M.D. Tascon, L.G. Tejuca, Z. Phys. Chem. 121, 79–93 (1980)CrossRefGoogle Scholar
  10. 10.
    H. Yasuda, Y. Fujiwara, N. Mizuno et al., J. Chem. Soc., Faraday Trans. 90, 1183–1189 (1994)CrossRefGoogle Scholar
  11. 11.
    N.K. Gaur, R. Thakur, R.K. Thakur, Int. J. Thermophys. 33, 2311–2322 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    H. Wang, Z. Zhao, C. Xu, Chin. Sci. Bull. 50, 1440–1444 (2005)CrossRefGoogle Scholar
  13. 13.
    X. Huo, Preparation and Characterization of La1-xCexMn1-yCoyO3 for Catalytic Combustion of Soot (Tianjin University Press, Tianjin, 2012), pp. 56–61Google Scholar
  14. 14.
    Z. Shao, G. Xiong, S. Sheng et al., Stud. Surf. Sci. Catal. 118, 431–439 (1998)CrossRefGoogle Scholar
  15. 15.
    N. Mizuno, H. Fujii, M. Misono, Curr. Opin. Solid State Mater. Sci. 5, 381–387 (2001)CrossRefGoogle Scholar
  16. 16.
    T.S. Jamil, H.A. Abbas, A.M. Youssief et al., C. R. Chim. 20, 97–106 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Jia, J. Zhang, W. Shi et al., Ind. Catal. 19, 11–14 (2011)Google Scholar
  18. 18.
    T. Klaytae, P. Panthong, S. Thountom, Ceram. Int. 39, S405–S408 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Muthuraman, K.C. Patil, Mater. Res. Bull. 33, 655–661 (1998)CrossRefGoogle Scholar
  20. 20.
    K. Adhikary, M. Takahashi, S. Kikkawa, Mater. Res. Bull. 33, 1845–1855 (1998)CrossRefGoogle Scholar
  21. 21.
    Z. Yue, J. Zhou, L. Li et al., J. Magn. Magn. Mater. 208, 55–60 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    D.A. Fumo, M.R. Morelli, A.M. Segadaes, Mater. Res. Bull. 31, 1243–1255 (1996)CrossRefGoogle Scholar
  23. 23.
    D.A. Fumo, J.R. Jurado, A.M. Segadaes et al., Mater. Res. Bull. 32, 1459–1470 (1997)CrossRefGoogle Scholar
  24. 24.
    Y. Shen, K. Qiao, L. Cao et al., Chin. J. Chem. Eng. 9, 295–300 (2015)Google Scholar
  25. 25.
    X. Wang, J. Zuo, Y. Luo et al., Appl. Surf. Sci. 396, 95–101 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    G. Pecchi, C. Campos, O. Pena et al., J. Mol. Catal. A: Chem. 282, 158–166 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Zhao, P. Qiu, X. Xie et al., Coal Convers. 40, 13–18 (2017)Google Scholar
  28. 28.
    J. Yang, Y. Zhang, N. Cai, J. Eng. Therm. Energy Power. 25, 301–305 (2010)Google Scholar
  29. 29.
    H.R. Pouretedal, R. Ebadpour, Int. J. Thermophys. 35, 942–951 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    M. Fahad, Y. Iqbal, Int. J. Thermophys. 35, 361–374 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    X. Zhu, Z. Zhu, C. Zhang, J. Chem. Eng. Chin. Univ. 3, 223–228 (1999)Google Scholar
  32. 32.
    A.W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)ADSCrossRefGoogle Scholar
  33. 33.
    C.D. Doyle, J. Appl. Polym. Sci. 5, 285–292 (1961)CrossRefGoogle Scholar
  34. 34.
    Z. Pavlik, A. Trmik, T. Kulovaná, Int. J. Thermophys. 37, 32 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    H.L. Friedman, J. Macromol. Sci. A. 1, 57–79 (1967)CrossRefGoogle Scholar
  36. 36.
    P. Roohi, R. Alizadeh, E. Fatehifar, Int. J. Thermophys. 36, 1 (2015)CrossRefGoogle Scholar
  37. 37.
    C. Wang, C. Zhang, W. Hua et al., Chem. Eng. J. 315, 392–402 (2017)CrossRefGoogle Scholar
  38. 38.
    K. Miura, T. Maki, Energy Fuels 12, 864–869 (1998)CrossRefGoogle Scholar
  39. 39.
    T. Maki, A. Takatsuno, K. Miura, Energy Fuels 11, 972–977 (1997)CrossRefGoogle Scholar
  40. 40.
    S. Vyazovkin, A.K. Burnham, M.C. Jose, Thermochim. Acta 520, 1–19 (2011)CrossRefGoogle Scholar
  41. 41.
    Q. Sun, W. Li, H. Chen et al., J. Chem. Indus. Eng. 11, 1598–1602 (2003)Google Scholar
  42. 42.
    H. Song, G. Liu, J. Wu, Convers. Manag. 126, 1037–1046 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Power EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.School of Information and Control EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations