Advertisement

Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry

Part II: Single Experiment
  • Ludger Wolff
  • Pouria Zangi
  • Thorsten Brands
  • Michael Heinrich Rausch
  • Hans-Jürgen Koß
  • Andreas Paul Fröba
  • André Bardow
Article

Abstract

A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018,  https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.

Keywords

Concentration dependence Diffusion Interferometry Loschmidt 

Notes

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) with Grants BA 2884/7-1 and FR 1709/13-1.

Supplementary material

10765_2018_2451_MOESM1_ESM.pdf (151 kb)
Supplementary Materials: See Supplementary Material for numerical values of diffusion coefficients from our experiments and from literature. (pdf 152KB)

References

  1. 1.
    E.L. Cussler, Diffusion—Mass Transfer in Fluid Systems (Cambridge University Press, Cambridge, 2007)Google Scholar
  2. 2.
    R.J.J. van Heijningen, J.P. Harpe, J.J.M. Beenakker, Physica 38, 1 (1968).  https://doi.org/10.1016/0031-8914(68)90059-1 ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Staker, P.J. Dunlop, K.R. Harris, T.N. Bell, Chem. Phys. Lett. 32, 561 (1975).  https://doi.org/10.1016/0009-2614(75)85240-7 ADSCrossRefGoogle Scholar
  4. 4.
    P.J. Carson, P.J. Dunlop, Chem. Phys. Lett. 14, 377 (1972).  https://doi.org/10.1016/0009-2614(72)80137-4 ADSCrossRefGoogle Scholar
  5. 5.
    G.R. Staker, M.A. Yabsley, J.M. Symons, P.J. Dunlop, J. Chem. Soc. Farad. Trans. 1, 825 (1974).  https://doi.org/10.1039/F19747000825 CrossRefGoogle Scholar
  6. 6.
    P.J. Carson, P.J. Dunlop, T.N. Bell, J. Chem. Phys. 56, 531 (1972).  https://doi.org/10.1063/1.1676900 ADSCrossRefGoogle Scholar
  7. 7.
    P.S. Arora, P.J. Carson, P.J. Dunlop, Chem. Phys. Lett. 54, 117 (1978).  https://doi.org/10.1016/0009-2614(78)85678-4 ADSCrossRefGoogle Scholar
  8. 8.
    T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972).  https://doi.org/10.1063/1.3253094 ADSCrossRefGoogle Scholar
  9. 9.
    L. Wolff, P. Zangi, T. Brands, M.H. Rausch, H.J. Koß, A.P. Fröba, A. Bardow, Int. J. Thermophys. (2018).  https://doi.org/10.1007/s10765-018-2450-8 CrossRefGoogle Scholar
  10. 10.
    P.K. Gupta, A.R. Cooper, Physica 54, 39 (1971)ADSCrossRefGoogle Scholar
  11. 11.
    J.C. Clunie, N. Li, M.T. Emerson, J.K. Baird, J. Phys. Chem. 94, 6099 (1990).  https://doi.org/10.1021/j100378a085 CrossRefGoogle Scholar
  12. 12.
    C. Durou, C. Moutou, J. Mahenc, J. Chim. Phys. 71, 271 (1974).  https://doi.org/10.1051/jcp/1974710271 CrossRefGoogle Scholar
  13. 13.
    A. Bardow, V. Göke, H.J. Koß, K. Lucas, W. Marquardt, Fluid Phase Equilib. 228, 357 (2005).  https://doi.org/10.1016/j.fluid.2004.08.017 CrossRefGoogle Scholar
  14. 14.
    E. Kriesten, M.A. Voda, A. Bardow, V. Göke, F. Casanova, B. Blümich, H.J. Koß, W. Marquardt, Fluid Phase Equilib. 277, 96 (2009).  https://doi.org/10.1016/j.fluid.2008.10.012 CrossRefGoogle Scholar
  15. 15.
    A. Bouchaudy, C. Loussert, J.B. Salmon, AIChE J. (2017).  https://doi.org/10.1002/aic.15890 CrossRefGoogle Scholar
  16. 16.
    T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 34, 47 (2013).  https://doi.org/10.1007/s10765-012-1352-4 ADSCrossRefGoogle Scholar
  17. 17.
    T. Kugler, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 36, 3169 (2015).  https://doi.org/10.1007/s10765-015-1981-5 ADSCrossRefGoogle Scholar
  18. 18.
    M. Kullnick, Interferometrische Untersuchung der Diffusion in binären Gemischen realer Gase mit einer Loschmidt-Diffusionsapparatur. Dissertation, Technical University of Braunschweig (2001)Google Scholar
  19. 19.
    J. Baranski, Bestimmung binärer Diffusionskoeffizienten von Gasen mit einer Loschmidt-Zelle und holografischer Interferometrie. Dissertation, Universität Rostock, Rostock (2002)Google Scholar
  20. 20.
    D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 105409 (2011).  https://doi.org/10.1088/0957-0233/22/10/105409 ADSCrossRefGoogle Scholar
  21. 21.
    T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 36, 3116 (2015).  https://doi.org/10.1007/s10765-015-1966-4 ADSCrossRefGoogle Scholar
  22. 22.
    J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975)zbMATHGoogle Scholar
  23. 23.
    J. Bausa, W. Marquardt, AIChE J. 47, 1318 (2001).  https://doi.org/10.1002/aic.690470610 CrossRefGoogle Scholar
  24. 24.
    J. Gmehling, B. Kolbe, M. Kleiber, J. Rarey, Chemical Thermodynamics for Process Simulation (Wiley, Hoboken, 2012)Google Scholar
  25. 25.
    Y. Bard, Nonlinear Parameter Estimation (Academic Press, New York, 1973)zbMATHGoogle Scholar
  26. 26.
    B.N. Srivastava, R. Paul, Physica 28, 646 (1962).  https://doi.org/10.1016/0031-8914(62)90120-9 ADSCrossRefGoogle Scholar
  27. 27.
    J. Kestin, K. Knierim, E.A. Mason, B. Najafi, S.T. Ro, M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984).  https://doi.org/10.1063/1.555703 ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    G.R. Staker, P.J. Dunlop, Chem. Phys. Lett. 42, 419 (1976).  https://doi.org/10.1016/0009-2614(76)80643-4 ADSCrossRefGoogle Scholar
  30. 30.
    T. Kugler, Determination of Gaseous Binary Diffusion Coefficients Using a Loschmidt Cell Combined with Holographic Interferometry. Dissertation, Universität Erlangen-Nürnberg (2015)Google Scholar
  31. 31.
    H.J. Achtermann, J.G. Hong, G. Magnus, R.A. Aziz, M.J. Slaman, J. Chem. Phys. 98, 2308 (1993).  https://doi.org/10.1063/1.464212 ADSCrossRefGoogle Scholar
  32. 32.
    D.R. MacQuigg, Appl. Opt. 16, 291 (1977).  https://doi.org/10.1364/AO.16.000291 ADSCrossRefGoogle Scholar
  33. 33.
    D.B. Neumann, H.W. Rose, Appl. Opt. 6, 1097 (1967).  https://doi.org/10.1364/AO.6.001097 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Technical ThermodynamicsRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Advanced Optical Technologies - Thermophysical Properties (AOT-TP)Friedrich-Alexander-University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations