Advertisement

Thermoelectric Stability of Graphite-Based Thermocouples

  • Frank Edler
  • Sebastian Haupt
Article
  • 51 Downloads

Abstract

This paper describes the design of newly developed graphite-based thermocouples and the results of investigation of their thermoelectric stability up to temperatures of about 1950 °C in graphite-containing atmospheres. All investigated combinations of different graphite grades revealed considerable thermoelectric drifts above approximately 1600 °C. With the most promising combination of isostatically pressed carbon and glassy carbon as the sensitive elements, drift rates of less than 0.1 K·h−1 could be achieved in use at 1500 °C. This allows at least short-term use of the graphite-based thermocouples at specific applications where metallic thermocouples cannot be reliably used.

Keywords

Graphite materials Temperature measurement Thermocouples 

Notes

Acknowledgements

This work was carried out as part of a European Metrology Programme for Innovation and Research (EMPIR) project to enhance process efficiency through improved temperature measurement, ‘EMPRESS’. EMPIR is jointly funded by the EMPIR participating countries within EURAMET and the European Union.

References

  1. 1.
    Euramet TC-T Temperature Roadmap and Explanatory Notes: http://www.euramet.org/index.php?id=1652 (see also: Machin G., Bojkovski J., del Campo D., Dogan A. K., Fischer J., Hermier Y., Merlone A., Nielsen J., Peruzzi A., Ranostaj J., Strnad, R., A European Roadmap for Thermometry, Int. J. Thermophys. 35, 385-394 (2014))
  2. 2.
    P.A. Kienzi, Thermocouple Temperature Measurement (Wiley, Hoboken, 1973) (ISBN 0-471-48080-0) Google Scholar
  3. 3.
    O. Ongrai, J.V. Pearce, G. Machin, S.J. Sweeney, AIP Conf. Proc. 1552, 504 (2013).  https://doi.org/10.1063/1.4821392 ADSCrossRefGoogle Scholar
  4. 4.
    A. Ulanovskiy, F. Edler, J. Fischer, P. Oleynikov, P. Zaytsev, A. Pokhodun, Int. J. Thermophys. 36, 433–443 (2015).  https://doi.org/10.1007/s10765-014-1780-4 ADSCrossRefGoogle Scholar
  5. 5.
    J.V. Pearce, F. Edler, C.J. Elliott, L. Rosso, G. Sutton, R. Zante, G. Machin, in 17th International Congress of Metrology (2015).  https://doi.org/10.1051/metrology/2015008001
  6. 6.
    N.R. Thielke, R.L. Shepard, TID-7586, pt 1, pp. 44–52 (1960)Google Scholar
  7. 7.
    R.D. Westbrook, R.L. Shepard, U.S. Patent 2,946,835 (1960)Google Scholar
  8. 8.
    E. Franks, Temperature, its Measurement and Control in Science and Industry, Part 2, vol 3 (Reinhold Publishing Corp., New York, 1962), p. 189Google Scholar
  9. 9.
    N.V. Zuikov, et al., Teplofizika Vysokikh Temperatur 3, 815 (1965) (in Russian) Google Scholar
  10. 10.
    E. Lenz, S. Haupt, F. Edler, P. Ziolkowski, H.F. Pernau, Phys. Status Solidi C 9, 2432–2435 (2012).  https://doi.org/10.1002/pssc.201200305 ADSCrossRefGoogle Scholar
  11. 11.
    F. Edler, S. Haupt, TM Technisches Messen 84, 779 (2017).  https://doi.org/10.1515/teme-2017-0073 CrossRefGoogle Scholar
  12. 12.
    R.E. Franklin, Proc. R. Soc. A 209, 196–218 (1951)ADSCrossRefGoogle Scholar
  13. 13.
    F. Edler, K. Anhalt, J. Hartmann, in Proceedings of the Tempmeko 2004 (Cavtat), ed. by D. Zvizdic, p. 873 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physikalisch-Technische BundesanstaltBerlinGermany

Personalised recommendations