Advertisement

Photoacoustic Spectroscopy Investigation of Zinc Oxide/Diatom Frustules Hybrid Powders

  • F. R. Lamastra
  • M. L. Grilli
  • G. Leahu
  • A. Belardini
  • R. Li Voti
  • C. Sibilia
  • D. Salvatori
  • I. Cacciotti
  • F. Nanni
ICPPP 19
  • 14 Downloads
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

Photoacoustic spectroscopy investigation was carried out on ZnO nanoparticles grown at 80 °C on porous surface of diatomite (DE) by sol–gel technique, using zinc acetate dihydrate as ceramic precursor and triethanolamine to mediate the surface growth of the nanoparticles. Absorption and scattering characteristics of hybrid ZnO/DE powder in the UV–Vis range were inferred by photoacoustic spectroscopy, and results were analyzed based on Helander’s theory. In particular, we discussed in detail the procedure to calculate the absorption and scattering spectra of the hybrid powder showing how from the scattering coefficient in the 300–450 nm range it is possible to obtain information on the size distribution of the ZnO nanospheres. By applying photoacoustic spectroscopy for different modulation frequencies, we showed that is also possible to perform a size distribution depth profile of the ZnO aggregates, opening the way to interesting developments in this research field.

Keywords

Diatomite Light absorption Light scattering Photoacoustics Sol–gel synthesis Spectroscopy Zinc oxide nanoparticles 

References

  1. 1.
    I. Ruggiero et al., Nanoscale Res. Lett. 9, 329 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Aw et al., Powder Technol. 223, 52–58 (2012)CrossRefGoogle Scholar
  3. 3.
    Z. Bao et al., Nature 446, 172 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    S. Chandrasekaran et al., Chem. Commun. 50, 10441–10444 (2014).  https://doi.org/10.1039/C4CC04470C CrossRefGoogle Scholar
  5. 5.
    R. De Angelis, S. Melino, P. Prosposito, M. Casalboni, F.R. Lamastra, F. Nanni, L. Bruno, R. Congestri, PLoS ONE 11, e0165571 (2016)CrossRefGoogle Scholar
  6. 6.
    F.R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, F. Nanni, RSC Adv. 4, 61809–61816 (2014)CrossRefGoogle Scholar
  7. 7.
    F.R. Lamastra, S. Mori, V. Cherubini, M. Scarselli, F. Nanni, Mater. Chem. Phys. 194, 253–260 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Losic, J.G. Mitchell, N.H. Voelcker, New J. Chem. 30, 908–914 (2006)CrossRefGoogle Scholar
  9. 9.
    D. Haranath et al., Nanotehnology 20, 42570 (2009)Google Scholar
  10. 10.
    X.D. Li et al., Opt. Express 21, 14131–14138 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M.L. Grilli, A. Sytchkova, S. Boycheva, A. Piegari, Phys. Status Solidi A 210, 748–754 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Azmina, R. Md Nor, H.A. Rafaie et al., Appl. Nanosci. 7, 885 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    F.R. Lamastra, M.L. Grilli, G. Leahu, A. Belardini, R. Li Voti, C. Sibilia, D. Salvatori, I. Cacciotti, F. Nanni, Nanotechnology 28, 375704 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    A. Rosencwaig, Anal. Chem. 47, 592A–604A (1975)CrossRefGoogle Scholar
  15. 15.
    A. Rosencwaig, Gersho, J. Appl. Phys. 47, 64–69 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    G. Cesarini, G. Leahu, M.L. Grilli, A. Sytchkova, C. Sibilia, R. Li Voti, Phys. Status Solidi C 13, 998–1001 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A. Sytchkova, M. Luisagrilli, A. Rinaldi, S. Vedraine, P. Torchio, A. Piegari, F. Flory, J. Appl. Phys. 114, 094509 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    R. Li Voti, G.L. Leahu, S. Gaetani, C. Sibilia, V. Violante, E. Castagna, M. Bertolotti, J. Opt. Soc. Am. B 26, 1585–1593 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    R. Li Voti, G. Leahu, M.C. Larciprete, C. Sibilia, M. Bertolotti, I. Nefedov, I. Anoshkin, Int. J. Thermophys. 36, 1342–1348 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, M. Guina, C. Sibilia, Sci. Rep. 7, 2833 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    G. Leahu, R. Li Voti, C. Sibilia, M. Bertolotti, Appl. Phys. Lett. 103, 231114 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A. Belardini, M. Centini, G. Leahu, D.C. Hooper, R. Li Voti, E. Fazio, J.W. Haus, A. Sarangan, V.K. Valev, C. Sibilia, Sci. Rep. 6, 31796 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    A. Benedetti, B. Alam, M. Esposito, V. Tasco, G. Leahu, A. Belardini, R. Li Voti, A. Passaseo, C. Sibilia, Sci. Rep. 7, 5257 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    O. Matsuda, M.C. Larciprete, R. Li Voti, O.B. Wright, Ultrasonics 56, 3–20 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Kashiwada, O. Matsuda, J.J. Baumberg, R. Li Voti, O.B. Wright, J. Appl. Phys. 100, 073506 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    T. Dehoux, O.B. Wright, R.L. Voti, Ultrasonics 50, 197–201 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Tomoda, O. Matsuda, O.B. Wright, R. Li Voti, Appl. Phys. Lett. 90, 041114 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    A.C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980)ADSCrossRefGoogle Scholar
  29. 29.
    M.C. Larciprete, A. Albertoni, A. Belardini, G. Leahu, R. Li Voti, F. Mura, C. Sibilia, A.G. Nasibulin, J. Appl. Phys. 112, 083503 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    G. Leahu, R. Li Voti, C. Sibilia, M. Bertolotti, V. Golubev, D.A. Kurdyukov, Opt. Quantum Electron. 39, 305–310 (2007)CrossRefGoogle Scholar
  31. 31.
    R. Li Voti, M.C. Larciprete, G. Leahu, C. Sibilia, M. Bertolotti, J. Nanophoton. 6, 1601 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    R. Li Voti, Rom. Rep. Phys. 64, 446–466 (2012)Google Scholar
  33. 33.
    P. Helander, I. Lundstrom, D. McQueen, J. Appl. Phys. 51, 3841–3847 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    E. Petronijevic, G. Leahu, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, M. Guina, C. Sibilia, Int. J. Thermophys. 39, 45 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    P. Helander, J. Appl. Phys. 54, 3410–3414 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    P. Kubelka, F. Munk, Tech. Phys. 12, 593–601 (1931)Google Scholar
  37. 37.
    M. Bertolotti, S. Ligia, G. Liakhou, R. Li Voti, S. Paoloni, C. Sibilia, G. Ricciardiello, P. Alessi, J. Appl. Phys. 85, 2881–2887 (1999)ADSCrossRefGoogle Scholar
  38. 38.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Italian Interuniversity Consortium on Materials Science and Technology (INSTM)Research Unit Roma Tor VergataRomeItaly
  2. 2.ENEA, Casaccia Research CentreRomeItaly
  3. 3.Department of Fundamental and Applied Science for EngineeringSapienza Università di RomaRomeItaly
  4. 4.Department of Enterprise EngineeringUniversity of Rome ‘Tor Vergata’RomeItaly
  5. 5.Department of EngineeringUniversity of Rome Niccolò CusanoRomeItaly

Personalised recommendations