Advertisement

Lattice Boltzmann Simulations for Melting and Resolidification of Ultrashort Laser Interaction with Thin Gold Film

  • Ling Li
  • Mingyang Wu
  • Ling Zhou
Article
  • 67 Downloads

Abstract

The interaction between the laser and material is commonly described by the macroscale method, two-temperature model (TTM), and the microscale method, molecular dynamics. In the present paper, the melting and resolidification of ultrashort laser interaction with thin gold film is investigated in terms of a meso-scale method. The lattice Boltzmann method (LBM) including the electron–phonon collision term is established. A fixed grid approach is applied in the phonon subsystem to describe the phase change. The transition zone between solid and liquid is treated as the porous medium. The results predicted by the LBM coincide with the experiment data quite well. In addition, the detailed comparisons between the TTM with interfacial tracking method and the LBM are conducted. The influences of the laser fluences and pulse widths on the transition phase are also investigated.

Keywords

Lattice Boltzmann simulation Phase change Ultrashort laser radiation 

List of symbols

a

Thermal diffusion coefficient (m2·s−1)

C

Heat capacity (J·m−3·K−1)

F

External force (N)

Fl

Liquid fraction

G

Electron–lattice coupling factor (W·m−3·K−1)

hm

Latent heat of melting (J·kg−1)

J

Heat source fluence of laser (J·m−2)

k

Electron wave vector (m−1)

kB

Boltzmann constant (J·K−1)

L

Thickness of gold film (m)

Mk,k

Electron–phonon matrix element

m

Mass (kg)

N

Number density of atom (m−3)

q

Phonon wave vector (m−1)

R

Reflectivity of gold film

Rg

Gas constant for gold (J·kg−1·K−1)

S

Heat source of unit volume (W·m−3)

s

Interfacial location (m)

T

Temperature (K)

Tl,I

Interfacial temperature for lattices (K)

t

Time (s)

tp

Full width at half maximum (FWHM) pulse width (s)

U

Potential energy coefficient

V

Phase space

v

Velocity (m·s−1)

w

Weighting factor

x

Coordinate (m)

Greek symbols

δ

Optical penetration depth (m)

δb

Ballistic range (m)

Δl

Length of the transition zone (m)

ɛ

Energy (J)

λ

Thermal conductivity (W·m−1·K−1)

Planck constant (J·s)

ξ

Radius of phase transition zone (K)

ρ

Density (kg·m−3)

Γ

Relaxation time for the collision between different particles (s)

τ

Relaxation time for the collision in the homogeneous particles (s)

ω

Frequency (s−1)

Ω

Collision term

Subscripts

D

Debye

e

Electron

eq

Thermal equilibrium state

F

Fermi

i

Initial

I

Interfacial

l

Lattice

ph

Phonon

s

Sound

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Natural Science Foundation of China under Grant No. 51476102.

References

  1. 1.
    P. Hannaford, Femtosecond Laser Spectroscopy (Springer, Berlin, 2005)CrossRefGoogle Scholar
  2. 2.
    D. Bourell, M. Wohlert, N. Harlan, S. Das, J. Beaman, Adv. Eng. Mater. 4, 666 (2002)CrossRefGoogle Scholar
  3. 3.
    W.N. Su, P. Erasenthiran, P.M. Dickens, P.I. Mech, Eng. C-J. Mec. 217, 127 (2003)Google Scholar
  4. 4.
    J. Huang, Y. Zhang, J.K. Chen, Int. J. Heat Mass Transf. 52, 3091 (2009)CrossRefGoogle Scholar
  5. 5.
    A.K. Upadhyay, H.M. Urbassek, J. Phys. D Appl. Phys. 40, 3518 (2007)CrossRefADSGoogle Scholar
  6. 6.
    S.L. Anisimov, B.L. Kapeliovich, T.L. Perel’ man, Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  7. 7.
    T.Q. Qiu, C.L. Tien, ASME J. Heat Transf. 115, 835 (1993)CrossRefGoogle Scholar
  8. 8.
    J.K. Chen, J.E. Beraun, Numer. Heat Transf. A 40, 1 (2001)ADSGoogle Scholar
  9. 9.
    D.Y. Tzou, J. Heat Transf. 117, 8 (1995)CrossRefGoogle Scholar
  10. 10.
    J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transf. 49, 307 (2006)CrossRefGoogle Scholar
  11. 11.
    I.H. Chowdhury, X. Xu, Numer. Heat Transf. A 44, 219 (2003)CrossRefADSGoogle Scholar
  12. 12.
    C. Konrad, Y.W. Zhang, Y. Shi, Int. J. Heat Mass Transf. 50, 2236 (2007)CrossRefGoogle Scholar
  13. 13.
    Y.W. Zhang, J.K. Chen, J. Appl. Phys. 104, 054910 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Y.W. Zhang, J.K. Chen, ASME J. Heat Transf. 130, 062401 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Ren, J.K. Chen, Y. Zhang, Int. J. Heat Mass Transf. 55, 1620 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Huang, Y. Zhang, J.K. Chen, Appl. Phys. A 95, 643 (2009)CrossRefADSGoogle Scholar
  17. 17.
    J. Huang, Y.W. Zhang, J.K. Chen, M. Yang, Front. Energy 6, 1 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Ren, C.W. Cheng, J.K. Chen, Y. Zhang, D.Y. Tzou, Int. J. Therm. Sci. 70, 32 (2013)CrossRefGoogle Scholar
  19. 19.
    Q. Peng, Y. Zhang, Y. He, Y. Mao, Int. J. Heat Mass Transf. 61, 675 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Zhou, L. Li, Appl. Phys. A 116, 2157 (2014)CrossRefADSGoogle Scholar
  21. 21.
    Y. Yamashita, T. Yokomine, S. Ebara, A. Shimizu, Int. J. Thermophys. 27, 627 (2006)CrossRefADSGoogle Scholar
  22. 22.
    L. Yang, Y. Gan, Y. Zhang, J.K. Chen, Appl. Phys. A 106, 725 (2012)CrossRefADSGoogle Scholar
  23. 23.
    P. Ji, Y. Zhang, J. Phys. D Appl. Phys. 46, 495108 (2013)CrossRefGoogle Scholar
  24. 24.
    A.A. Mohamad, Lattice Boltzmann Method, Fundamentals and Engineering Applications with Computer Codes (Springer, London, 2011)zbMATHGoogle Scholar
  25. 25.
    G. de Fabritiis, A. Mancini, D. Mansutti, S. Succi, Int. J. Mod. Phys. C Comput. Phys. Phys. Comput. 9, 1405 (1998)ADSGoogle Scholar
  26. 26.
    W. Miller, J. Cryst. Growth 230, 263 (2001)CrossRefADSGoogle Scholar
  27. 27.
    A.D. Brent, V.R. Voller, K.J. Reid, Numer. Heat Transf. 13, 297 (1988)CrossRefADSGoogle Scholar
  28. 28.
    W. Miller, S. Succi, D. Mansutti, Phys. Rev. Lett. 86, 3578 (2001)CrossRefADSGoogle Scholar
  29. 29.
    D. Chatterjee, S. Chakraborty, Phys. Lett. A 341, 320 (2005)CrossRefADSGoogle Scholar
  30. 30.
    D. Chatterjee, S. Chakraborty, Phys. Lett. A 351, 359 (2006)CrossRefADSGoogle Scholar
  31. 31.
    S.C. Mishra, N.C. Behera, A.K. Garg, A. Mishra, Int. J. Heat Mass Transf. 51, 4447 (2008)CrossRefGoogle Scholar
  32. 32.
    C. Körner, E. Attar, P. Heinl, J. Mater. Process. Technol. 211, 978 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Zhao, P. Cheng, Int. J. Heat Mass Transf. 110, 94 (2017)CrossRefGoogle Scholar
  34. 34.
    S.I. Anisimov, Proc. SPIE 2793, 192 (1997)CrossRefGoogle Scholar
  35. 35.
    P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)CrossRefADSGoogle Scholar
  36. 36.
    J.M. Ziman, Electrons and Phonons (Oxford Univ. Press, London, 1960)zbMATHGoogle Scholar
  37. 37.
    M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)Google Scholar
  38. 38.
    J.K. Chen, W.P. Latham, J.E. Beraun, J. Laser Appl. 17, 63 (2005)CrossRefGoogle Scholar
  39. 39.
    E.A. Semma, M.E. Ganaoui, R. Bennacer, C. R. Mecanique 335, 295 (2007)CrossRefADSGoogle Scholar
  40. 40.
    S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987)CrossRefADSGoogle Scholar
  41. 41.
    T. Juhasz, H.E. Elsayed-Ali, X.H. Hu, W.E. Bron, Phys. Rev. B 45, 13819 (1992)CrossRefADSGoogle Scholar
  42. 42.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B 13, 459 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations