Thermodynamic Properties of Low-Density \({}^{132}\hbox {Xe}\) Gas in the Temperature Range 165–275 K

  • Abdulrahman Akour


The method of static fluctuation approximation was used to calculate selected thermodynamic properties (internal energy, entropy, energy capacity, and pressure) for xenon in a particularly low-temperature range (165–270 K) under different conditions. This integrated microscopic study started from an initial basic assumption as the main input. The basic assumption in this method was to replace the local field operator with its mean value, then numerically solve a closed set of nonlinear equations using an iterative method, considering the Hartree–Fock B2-type dispersion potential as the most appropriate potential for xenon. The results are in very good agreement with those of an ideal gas.


Mean-field operator Static fluctuation approximation Thermodynamic properties Xenon gas 



Static fluctuation approximation


Hartree–Fock B2-type dispersion potential

T [K]

Temperature (Kelvin)

\(\hat{{\Psi }}(\vec {r})\)

Annihilation field operators

\(\hat{{\Psi }}^{+}(\vec {r})\)

Creation field operators

\(\psi _{\vec {k}} (\vec {r})\)

Single-particle wave function

\(\psi _{\vec {k}}^+ (\vec {r})\)

Single-particle wave function complex conjugate


Fourier transform of interatomic potential

\(\Omega \)

Normalized volume of system

Supplementary material

10765_2017_2332_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (docx 36 KB)
10765_2017_2332_MOESM2_ESM.docx (38 kb)
Supplementary material 2 (docx 38 KB)


  1. 1.
    A.K. Dham, W.J. Meath, A.R. Allnatt, R.A. Aziz, M.J. Slaman, Chem. Phys. 142, 173 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    S.I. Qashou, M.K. AlSugheir, A.R. Sakhel, H.B. Ghassib, Int. J. Mod. Phys. B 24, 4779 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    M.K. Al-Sugheir, F.M. Al-Dweri, G. Alna’Washi, M.G. Shatnawi, Phys. B 408, 151 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    R.R. Nigmatullin, V.A. Toboev, Theor. Math. Phys. 74, 79 (1988)CrossRefGoogle Scholar
  5. 5.
    M.K. Al-Sugheir, H.B. Ghassib, Int. J. Theor. Phys. 41, 705 (2002)CrossRefGoogle Scholar
  6. 6.
    O. Sifner, J. Klomfar, J. Phys. Chem. Ref. Data 23, 63 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    A.F. Collings, R.O. Watts, L.A. Woolf, Mol. Phys. 20, 1121 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    A. Malijevsky, A. Malijevsky, Mol. Phys. 101, 3335 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    L. Bewilogua, C. Gladun, Contemp. Phys. 9, 277 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Ratner, Phys. Rep. 269, 197–332 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  12. 12.
    H.T. Stoof, M. Bijlsma, M. Houbiers, J. Res. Natl. Inst. Stand. Technol. 101, 443 (1996)CrossRefGoogle Scholar
  13. 13.
    R.K. Pathria, P.D. Beale, Statistical Mechanics, 3rd edn. (Elsevier, Amsterdam, 2011)zbMATHGoogle Scholar
  14. 14.
    R.P.H. Gasser, W.G. Richard, An Introduction to Statistical Thermodynamics, 1st edn. (World Scientific Publishing, Singapore, 1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Basic Science, Al-Huson CollegeAl-Balqa Applied UniversityAl-HusonJordan

Personalised recommendations