Advertisement

Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

  • H. D. Koca
  • T. Evgin
  • N. Horny
  • M. Chirtoc
  • A. TurgutEmail author
  • I. H. Tavman
CPPTA3
  • 143 Downloads
Part of the following topical collections:
  1. 3rd Conference on Photoacoustic and Photothermal Theory and Applications

Abstract

In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

Keywords

Nanocomposites Photothermal radiometry Polymer Thermal conductivity Thermal diffusivity Thermal effusivity 

References

  1. 1.
    I.H. Tavman, J. Appl. Polym. Sci. 62, 2161–2167 (1996)CrossRefGoogle Scholar
  2. 2.
    Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Eur. Polym. J. 38, 1887–1897 (2002)CrossRefGoogle Scholar
  3. 3.
    W. Zhou, D. Yu, J. Mater. Sci. 48, 7960–7968 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    V. Chifor, Z. Tekiner, M. Turker, R. Orban, J. Zhejiang Univ. Sci. A 12, 583–592 (2011)CrossRefGoogle Scholar
  5. 5.
    J.K. Carson, M. Noureldin, Int. Commun. Heat Mass Transf. 36, 458–461 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Ramezani Kakroodi, Y. Kazemi, D. Rodrigue, Polym. Adv. Technol. 26, 362–368 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Zhou, Polym. Eng. Sci. 51, 917–924 (2011)CrossRefGoogle Scholar
  8. 8.
    N. Horny, Y. Kanake, M. Chirtoc, L. Tighzert, Polym. Degrad. Stab. 127, 105–112 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Lee, M. Park, J. Kim, J.I. Lee, H.G. Yoon, Compos. A Appl. Sci. Manuf. 37, 727–734 (2006)CrossRefGoogle Scholar
  10. 10.
    X. Li, L.G. Tabil, I.N. Oguocha, S. Panigrahi, Compos. Sci. Technol. 68, 1753–1758 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Chirtoc, N. Horny, I.H. Tavman, A. Turgut, I. Kökey, M. Omastová, Int. J. Therm. Sci. 62, 50–55 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Evgin, H.D. Koca, N. Horny, A. Turgut, I.H. Tavman, M. Chirtoc, M. Omastová, I. Novak, Compos. A Appl. Sci. Manuf. 82, 208–213 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Chirtoc, in Ch 2, Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments, ed. by E. Marin (Transworld Research Network, Trivandrum, 2009), pp. 29–57Google Scholar
  14. 14.
    M. Chirtoc, N. Horny, I.H. Tavman, A. Turgut, in Ch 11, Spectroscopy of Polymer Nanocomposites, ed. by S. Thomas, D. Rouxel, D. Ponnamma (Elsevier, Amsterdam, 2016), pp. 312–361Google Scholar
  15. 15.
    I. H. Tavman, T. Evgin, in IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME, 2015), pp. 31–35 (2015)Google Scholar
  16. 16.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd edn. (Dover, New York, 1954)zbMATHGoogle Scholar
  17. 17.
    R. Landauer, J. Appl. Phys. 23, 779–84 (1952)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Agari, T. Uno, J. Appl. Polym. Sci. 32, 5705–12 (1986)CrossRefGoogle Scholar
  19. 19.
    S.C. Cheng, R.I. Vachon, Int. J. Heat Mass Transf. 13, 537 (1970)CrossRefGoogle Scholar
  20. 20.
    T.K. Dey, M. Tripathi, Thermochim. Acta 502, 35–42 (2010)CrossRefGoogle Scholar
  21. 21.
    J.S. Kim, M. Hong, S. Kwak, Y. Seo, Phys. Chem. Chem. Phys. 11, 10851–10859 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 59, 41–85 (2016)CrossRefGoogle Scholar
  23. 23.
    N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Prog. Polym. Sci. 61, 1–28 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Bhattacharya, Materials 9, 262–297 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    M.X. Shen, Y.X. Cui, J. He, Y.M. Zhang, Int. J. Miner. Metall. Mater. 18, 623–631 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • H. D. Koca
    • 1
  • T. Evgin
    • 1
    • 2
  • N. Horny
    • 3
  • M. Chirtoc
    • 3
  • A. Turgut
    • 2
    Email author
  • I. H. Tavman
    • 2
  1. 1.Mechanical Engineering Department, The Graduate School of Natural and Applied SciencesDokuz Eylul UniversityBuca, IzmirTurkey
  2. 2.Mechanical Engineering Department, Engineering FacultyDokuz Eylul UniversityBuca, IzmirTurkey
  3. 3.Multiscale Thermophysics Lab, GRESPIUniversité de Reims Champagne-Ardenne URCAReimsFrance

Personalised recommendations