Advertisement

Solubility of Nitrogen Gas in Aqueous Solution of Tetra-n-Butylammonium Bromide

  • Sanehiro MuromachiEmail author
  • Hiroyuki Miyamoto
  • Ryo Ohmura
Article

Abstract

Semiclathrate hydrates are water-based host-guest compounds formed from aqueous solutions of ionic guest substances. These materials can greatly moderate formation pressures and temperatures from canonical gas hydrates. This is a significant advantage for industrial applications such as gas separation and storage. \(\hbox {N}_{2}\) gas is a major component contained in various flue gases and is usually mixed with \(\hbox {CO}_{2}\). Semiclathrate hydrates can separate these gases under moderate thermodynamic conditions. Tetra-n-butylammonium bromide (TBAB) is a widely used ionic guest substance. To develop the application technologies and their theoretical models, solubility data of \(\hbox {N}_{2}\) gas in TBAB aqueous solutions are required. In this study, we report \(\hbox {N}_{2}\) gas solubility measured by an absolute gravimetric method for the semiclathrate hydrate formation system of \(\hbox {TBAB} + \hbox {H}_{2}\hbox {O} + \hbox {N}_{2}\). The measurement pressures, temperatures and TBAB mass fractions were 3 MPa, 5 MPa and 7 MPa, 292.15 K, 302.15 K and 307.15 K, and 0 (pure water), 0.10, 0.20, 0.32 and 0.40, respectively. The uncertainties were 0.056 MPa, 0.44 K and 0.00012 in mole fraction. Although the technical difficulty lays on measurements of small \(\hbox {N}_{2}\) gas solubility by the absolute gravimetric method, our data implied the unique gas dissolution property of aqueous TBAB solution depending on the TBAB concentration. The aqueous TBAB solutions with mass fractions of 0.10 and 0.20 had similar \(\hbox {N}_{2}\) gas solubility as that in pure water. With higher mass fractions, 0.32 and 0.40, the \(\hbox {N}_{2}\) gas solubility slightly increased from that in pure water, which implies the salting-in effect of TBAB.

Keywords

Aqueous solution Nitrogen Semiclathrate hydrate Solubility Tetra-n-butylammonium bromide 

Notes

Acknowledgements

We thank Atsushi Shijima, Shogo Azumano, Shiro Suzuki and Ryota Bamba for their technical support for the experiments, and Joseph English for proofreading.

References

  1. 1.
    G.A. Jeffrey, in Inclusion Compounds, vol. 1, ed. by J.L. Atwood, J.E.D. Davies, D.D. MacNicol (Academic Press, London, 1984), pp. 159–177Google Scholar
  2. 2.
    S. Muromachi, K.A. Udachin, K. Shin, S. Alavi, I.L. Moudrakovski, R. Ohmura, J.A. Ripmeester, Chem. Commun. 50, 11476 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Muromachi, K.A. Udachin, S. Alavi, R. Ohmura, J.A. Ripmeester, Chem. Commun. 52, 52621 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Douzet, M. Kwaterski, A. Lallemand, F. Chauvy, D. Flick, J.-M. Herri, Int. J. Refrig. 36, 1616 (2013)CrossRefGoogle Scholar
  5. 5.
    P. Zhang, Z.W. Ma, R.Z. Wang, Renew. Sustain. Energ. Rev. 14, 598 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Chapoy, R. Anderson, B. Tohidi, J. Am. Chem. Soc. 129, 746 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Shimada, T. Ebinuma, H. Oyama, Y. Kamata, S. Takeya, T. Uchida, J. Nagao, Jpn. J. Appl. Phys. 42, L129 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    N.H. Duc, F. Chauvy, J.-M. Herri, Energy Convers. Manag. 48, 1313 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Fan, S. Li, J. Wang, X. Lang, Y. Wang, Energy Fuel 23, 4202 (2009)CrossRefGoogle Scholar
  10. 10.
    D. Zhong, P. Englezos, Energy Fuel 26, 2098 (2012)CrossRefGoogle Scholar
  11. 11.
    P. Babu, W.I. Chin, R. Kumar, P. Linga, Ind. Eng. Chem. Res. 53, 4878 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Ye, P. Zhang, J. Chem. Eng. Data 59, 2920 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Muromachi, H. Hashimoto, T. Maekawa, Y. Yamamoto, S. Takeya, Fluid Phase Equilib. 413, 249 (2015)CrossRefGoogle Scholar
  14. 14.
    A. van Cleeff, G.A.M. Diepen, Rec. Trav. Chim. 79, 582 (1960)CrossRefGoogle Scholar
  15. 15.
    D.R. Marshall, S. Saito, R. Kobayashi, AIChE J. 10, 202 (1964)CrossRefGoogle Scholar
  16. 16.
    J. Jhaveri, D.B. Robinson, Can. J. Chem. Eng. 43, 75 (1965)CrossRefGoogle Scholar
  17. 17.
    K. Yasuda, Y. Oto, R. Shen, T. Uchida, R. Ohmura, J. Chem. Thermodyn. 67, 143 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Arjmandi, A. Chapoy, B. Tohidi, J. Chem. Eng. Data 52, 153 (2007)CrossRefGoogle Scholar
  19. 19.
    N. Ye, P. Zhang, J. Chem. Eng. Data 57, 1557 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Lee, S. Park, Y. Lee, J. Lee, H. Lee, Y. Seo, Langmuir 27, 10597 (2011)CrossRefGoogle Scholar
  21. 21.
    Y.A. Dyadin, K.A. Udachin, J. Struct. Chem. 28, 75 (1987)CrossRefGoogle Scholar
  22. 22.
    H. Oyama, W. Shimada, T. Ebinuma, Y. Kamata, S. Takeya, T. Uchida, J. Nagao, H. Narita, Fluid Phase Equilib. 234, 131 (2005)CrossRefGoogle Scholar
  23. 23.
    W. Shimada, M. Shiro, H. Kondo, S. Takeya, H. Oyama, T. Ebinuma, H. Narita, Acta Crystallogr. C 61, o65 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Jin, J. Nagao, J. Phys. Chem. C 117, 6924 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Jin, M. Kida, J. Nagao, J. Chem. Eng. Data 61, 679 (2016)CrossRefGoogle Scholar
  26. 26.
    B. Chazallon, M. Ziskind, Y. Carpentier, C. Focsa, J. Phys. Chem. B 118, 13440 (2014)CrossRefGoogle Scholar
  27. 27.
    D.W. Davidson, in Water: A Comprehensive Treatise, vol. 2, ed. by F. Franks (Plenum Press, New York, 1973), pp. 128–146Google Scholar
  28. 28.
    S. Fan, S. Li, J. Wang, X. Lang, Y. Wang, Energy Fuels 23, 4202 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Li, S. Fan, J. Wang, X. Lang, D. Liang, J. Nat. Gas. Chem. 18, 15 (2009)CrossRefGoogle Scholar
  30. 30.
    X.-S. Li, H. Zhan, C.-G. Xu, Z.-Y. Zeng, Q.-N. Lv, K.-F. Yan, Energy Fuels 26, 2518 (2012)CrossRefGoogle Scholar
  31. 31.
    Z.W. Ma, P. Zhang, H.S. Bao, S. Deng, Renew. Sustain. Energy Rev. 53, 1273 (2016)CrossRefGoogle Scholar
  32. 32.
    F. Wang, S. Fu, G. Guo, Z.-Z. Jia, S.-J. Luo, A.-B. Guo, Energy 104, 76 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Fan, X. Long, X. Lang, Y. Wang, J. Chen, Energy Fuels 30, 8529 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Hashimoto, T. Yamaguchi, T. Kinoshita, S. Muromachi, Energy 129, 292 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Takeya, S. Muromachi, T. Maekawa, Y. Yamamoto, H. Mimachi, T. Kinoshita, T. Murayama, H. Umeda, D.-H. Ahn, Y. Iwasaki, H. Hashimoto, T. Yamaguchi, K. Okaya, S. Matsuo, Energies 10, 927 (2017)CrossRefGoogle Scholar
  36. 36.
    P. Paricaud, J. Phys. Chem. B 115, 288 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Kwaterski, J.-M. Herri, Fluid Phase Equilib. 37, 22 (2014)CrossRefGoogle Scholar
  38. 38.
    W. Lin, D. Dalmazzone, W. Fürst, A. Delahaye, L. Fournaison, P. Clain, J. Chem. Eng. Data 58, 2233 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Muromachi, A. Shijima, H. Miyamoto, R. Ohmura, J. Chem. Thermodyn. 85, 94 (2015)CrossRefGoogle Scholar
  40. 40.
    International Organization for Standardization (ISO), Guide to the Expression of Uncertainty in Measurement (Geneva, Switzerland) (1993)Google Scholar
  41. 41.
    M.E. Wieser, N. Holden, T.B. Coplen, J.K. Böhlke, M. Berglund, W.A. Brand, P. De Bièvre, M. Gröning, R.D. Loss, J. Meija, T. Hirata, T. Prohaska, R. Schoenberg, G. O’Connor, T. Walczyk, S. Yoneda, X.-K. Zhu, Pure Appl. Chem. 85, 1047 (2013)CrossRefGoogle Scholar
  42. 42.
    R. Sander, Henry’s Law Constants, in ed. by P.J. Linstrom, W.G. Mallard. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov
  43. 43.
    S. Mao, A. Duan, Fluid Phase Equilib. 248, 103 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Research Institute for Energy Frontier (RIEF)National Institute of Advanced Industrial and Science Technology (AIST)TsukubaJapan
  2. 2.Department of Mechanical Systems EngineeringToyama Prefectural UniversityImizuJapan
  3. 3.Department of Mechanical EngineeringKeio UniversityYokohamaJapan

Personalised recommendations