Advertisement

Ab Initio Calculated Results Require New Formulations for Properties in the Limit of Zero Density: The Viscosity of Methane (\(\hbox {CH}_{4}\))

  • Arno LaeseckeEmail author
  • Chris D. Muzny
Article

Abstract

A wide-ranging formulation for the viscosity of methane in the limit of zero density is presented. Using ab initio calculated data of Hellmann et al. (J Chem Phys 129, 064302, 2008) from 80 K to 1500 K, the functional form was developed by guided symbolic regression with the constraints of correct extrapolation to \(T \rightarrow 0\) and in the high-temperature limit. The formulation was adjusted to the recalibrated experimental data of May et al. (Int J Thermophys 28, 1085–1110, 2007) so that these are represented within their estimated expanded uncertainty of 0.053 % (\(k = 2\)) in their temperature range from 210.756 K to 391.551 K. Based on comparisons with original data and recalibrated viscosity ratio measurements, the expanded uncertainty of the new correlation is estimated outside this temperature range to be 0.2 % to 700 K, 0.5 % to 1100 K, 1 % to 1500 K, and physically correct at higher temperatures. At temperatures below 210 K, the new correlation agrees with recalibrated experimental data within 0.3 % down to 150 K. Hellmann et al. estimated the expanded uncertainty of their calculated data at 1 % to 80 K. The new formulation extrapolates without a singularity to \(T\rightarrow 0\).

Keywords

Correlation Limit of zero density Methane Molecular interactions Reference standards Symbolic regression Viscosity 

Notes

Acknowledgements

We benefitted greatly in this and other works from discussions with Dr. Robert Hellmann and Professor Eckhard Vogel of the University of Rostock (Germany), and we thank Dr. Ala Bazyleva (NIST Thermodynamics Research Center) for her careful review of the manuscript. The long-term support by the library staff of the Department of Commerce Laboratories in Boulder, Colorado, is greatly appreciated.

References

  1. 1.
    J.J. Hurly, M.R. Moldover, Ab initio values of the thermophysical properties of helium as standards. J. Res. Natl. Inst. Stand. Technol. 105, 667–688 (2000)CrossRefGoogle Scholar
  2. 2.
    W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium. J. Chem. Phys. 136, 224303 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    E. Bich, R. Hellmann, E. Vogel, Ab initio potential energy curve for the helium atom pair and thermophysical properties of the dilute helium gas. II. Thermophysical standard values for low-density helium. Mol. Phys. 105, 3035–3049 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    E. Bich, R. Hellmann, E. Vogel, Ab initio potential energy curve for the neon atom pair and thermophysical properties for the dilute neon gas. II. Thermophysical properties for low-density neon. Mol. Phys. 106, 1107–1122 (2008)CrossRefGoogle Scholar
  5. 5.
    E. Vogel, B. Jäger, R. Hellmann, E. Bich, Ab initio pair potential energy curve for the argon atom pair and thermophysical properties for the dilute argon gas. II. Thermophysical properties for low-density argon. Mol. Phys. 108, 3335–3352 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    B. Jäger, R. Hellmann, E. Bich, E. Vogel, State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas. J. Chem. Phys. 144, 114304 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    R. Hellmann, E. Bich, E. Vogel, A.S. Dickinson, V. Vesovic, Calculation of the transport and relaxation properties of methane. I. Shear viscosity, viscomagnetic effects, and self-diffusion. J. Chem. Phys. 129, 064302 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    R. Hellmann, E. Bich, E. Vogel, V. Vesovic, Ab initio intermolecular potential energy surface and thermophysical properties of hydrogen sulfide. Phys. Chem. Chem. Phys. 13, 13749–13758 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Hellmann, Ab initio potential energy surface for the nitrogen molecule pair and thermophysical properties of nitrogen gas. Mol. Phys. 111, 387–401 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    R. Hellmann, Ab initio potential energy surface for the carbon dioxide molecule pair and thermophysical properties of dilute carbon dioxide gas. Chem. Phys. Lett. 613, 133–138 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    J.P. Crusius, R. Hellmann, E. Hassel, E. Bich, Intermolecular potential energy surface and thermophysical properties of ethylene oxide. J. Chem. Phys. 141, 164322 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Crusius, R. Hellmann, E. Hassel, E. Bich, Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide. J. Chem. Phys. 142, 244307 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    R. Hellmann, E. Vogel, The viscosity of dilute water vapor revisited: new reference values from experiment and theory for temperatures between (250 and 2500) K. J. Chem. Eng. Data 60, 3600–3605 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Hellmann, Intermolecular potential energy surface and thermophysical properties of propane. J. Chem. Phys. 146, 114304 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    F.A. Guevara, W.E. Wageman, Measurement of helium and hydrogen viscosities to 2340 degrees K. Los Alamos Sci. Lab., Los Alamos, NM, 1965, Report number NASA LA-3319 and CFSTI N65-33510Google Scholar
  16. 16.
    V. Vasilesco, Recherches expérimentales sur la viscosité des gazes aux températures elevées. Part II. Ann. Phys. 20, 292–334 (1945)CrossRefGoogle Scholar
  17. 17.
    V. Vasilesco, Recherches expérimentales sur la viscosité des gazes aux températures elevées. Part I. Ann. Phys. 20, 137–176 (1945)CrossRefGoogle Scholar
  18. 18.
    R.A. Dawe, E.B. Smith, Viscosities of the inert gases at high temperatures. J. Chem. Phys. 52, 693–703 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Kalelkar, J. Kestin, Viscosity of He–Ar and He–Kr binary gaseous mixtures in the temperature range 25–\(720 \,^{\circ }\text{ C }\). J. Chem. Phys. 52, 4248–4261 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    G.C. Maitland, E.B. Smith, The viscosity of \(\text{ CO }_{2}\) between \(293 \,^{\circ }\text{ K }\) and \(1500 \,^{\circ }\text{ K }\). J. Chim. Phys. Phys. Chim. Biol. 67, 631–632 (1970). [in French]ADSCrossRefGoogle Scholar
  21. 21.
    H.J.M. Hanley, G.E. Childs, Discrepancies between viscosity data for simple gases. Science 159, 1114–1117 (1968). [Washington]ADSCrossRefGoogle Scholar
  22. 22.
    F.A. Guevara, B.B. McInteer, D. Ottesen, H.J.M. Hanley, A critique of the high-temperature viscosity measurements of Trautz and Zink. Los Alamos Sci. Lab., Los Alamos, NM, 1971, Report 4643-MSGoogle Scholar
  23. 23.
    E. Vogel, E. Bastubbe, S. Rohde, Kalibrierung eines quarzglas-schwingscheibenviskosimeters für Präzisionsmessungen an gasen und organischen dämpfen. Wiss. Z. W. Pieck Univ. Rostock 33, 34–42 (1984)Google Scholar
  24. 24.
    E. Vogel, Präzisionsmessungen des viskositätskoeffizienten von stickstoff und den edelgasen zwischen raumtemperatur und 650 K. Ber. Bunsenges. Phys. Chem. 88, 997–1002 (1984)CrossRefGoogle Scholar
  25. 25.
    A. Laesecke, C.D. Muzny, Reference correlation for the viscosity of carbon dioxide. J. Phys. Chem. Ref. Data 46, 013107 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    M. Schmidt, H. Lipson, Symbolic regression of implicit equations, in Genetic Programming Theory and Practice VII, ed. by R. Riolo, U.-M. O’Reilly, T. McConaghy (Springer, Berlin, 2010), pp. 73–85CrossRefGoogle Scholar
  28. 28.
    S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge University Press, Cambridge, 1970)zbMATHGoogle Scholar
  29. 29.
    P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2014. J. Phys. Chem. Ref. Data 45, 74 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Kestin, W. Wakeham, S.T. Ro, An extended law of corresponding states for the equilibrium and transport properties of the noble gases. Physica 58, 165–211 (1972)ADSCrossRefGoogle Scholar
  31. 31.
    E.F. May, M.R. Moldover, R.F. Berg, Reference viscosities of \({\text{ H }}_{2}\), \({\text{ CH }}_{4}\), Ar and Xe at low densities. Int. J. Thermophys. 28, 1085–1110 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    R.F. Berg, E.F. May, M.R. Moldover, Viscosity-ratio measurements with capillary viscometers. J. Chem. Eng. Data 59, 116–124 (2014)CrossRefGoogle Scholar
  33. 33.
    E. Vogel, J. Wilhelm, C. Küchenmeister, M. Jaeschke, High-precision viscosity measurements on methane. High Temp. High Press. 32, 73–81 (2000)CrossRefGoogle Scholar
  34. 34.
    A.G. Clarke, E.B. Smith, Low-temperature viscosities and intermolecular forces of simple gases. J. Chem. Phys. 51, 4156–4161 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    R.A. Dawe, G.C. Maitland, M. Rigby, E.B. Smith, High temperature viscosities and intermolecular forces of quasi-spherical molecules. Trans. Farad. Soc. 66, 1955–1965 (1970)CrossRefGoogle Scholar
  36. 36.
    G.C. Maitland, E.B. Smith, Viscosities of binary gas-mixtures at high-temperatures. J. Chem. Soc. Faraday Trans. I 70, 1191–1211 (1974)CrossRefGoogle Scholar
  37. 37.
    D.W. Gough, G.P. Matthews, E.B. Smith, Viscosity of nitrogen and certain gaseous mixtures at low temperatures. J. Chem. Soc. Faraday Trans. I 72, 645–653 (1976)CrossRefGoogle Scholar
  38. 38.
    T. El Hawary, Messung der Dichte und Viskosität in der Gasphase von Methan, Stickstoff und Methan-Stickstoff-Gemischen mit einer weiterentwickelten kombinierten Viskositäts-Dichte-Messanlage und einer neuen Viskositätsmessanlage für geringe Gasdichten, Dissertation, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany (2009)Google Scholar
  39. 39.
    M. Schäfer, M. Richter, R. Span, Measurements of the viscosity of carbon dioxide at temperatures from 253.15 K to 473.15 K with pressures up to 1.2 MPa. J. Chem. Thermodyn. 89, 7–15 (2015)CrossRefGoogle Scholar
  40. 40.
    E. Vogel, Reference viscosities of gaseous methane and hydrogen sulfide at low density in the temperature range from (292 to 682) K. J. Chem. Eng. Data 56, 3265–3272 (2011)CrossRefGoogle Scholar
  41. 41.
    R.F. Berg, M.R. Moldover, Recommended viscosities of eleven dilute gases at \(25\,^{\circ }\text{ C }\). J. Phys. Chem. Ref. Data 41, 043104 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Unpublished correlation for the viscosity of methane in the limit of zero density in E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1 (National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, Maryland, 2013). https://www.nist.gov/srd/refprop. Accessed 25 July 2017

Copyright information

© Springer Science+Business Media, LLC (Outside the USA) 2017

Authors and Affiliations

  1. 1.Material Measurement Laboratory Applied Chemicals and Materials DivisionNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations