Advertisement

Thermophysicochemical Reaction of ZrCo–Hydrogen–Helium System

  • Kwangjin Jung
  • Hee-Seok Kang
  • Sei-Hun Yun
  • Hongsuk ChungEmail author
Article
  • 139 Downloads
Part of the following topical collections:
  1. Special Issue: Advances in Thermophysical Properties

Abstract

Nuclear fusion energy, which is clean and infinite, has been studied for more than half a century. Efforts are in progress worldwide for the demonstration and validation of nuclear fusion energy. Korea has been developing hydrogen isotope storage and delivery system (SDS) technologies including a basic scientific study on a hydrogen storage medium. An SDS bed, which is a key component of the SDS, is used for storing hydrogen isotopes in a metal hydride form and supplying them to a tokamak. Thermophysicochemical properties of the ZrCo–H\(_{2}\)–He system are investigated for the practical utilization of a hydriding alloy system. The hydriding reaction, in which \(\hbox {ZrCoH}_{\mathrm{x}}\) is composed as ZrCo absorbing hydrogen, is exothermic. The dehydriding reaction, in which \(\hbox {ZrCoH}_{\mathrm{x}}\) decomposes into ZrCo and hydrogen, is endothermic. The heat generated through the hydriding reaction interrupts the hydriding progress. The heat loss by a dehydriding reaction impedes the dehydriding progress. The tritium decay product, helium-3, covers the ZrCo and keeps the hydrogen from contact with ZrCo in the SDS bed. In this study, we designed and fabricated a ZrCo bed and its performance test rig. The helium blanketing effect on a ZrCo hydrogen reaction with 0 % to 20 % helium content in a gaseous phase and a helium blanket removal method were studied experimentally. In addition, the volumetric flow rates and temperature at the beginning of a ZrCo hydrogen reaction in a hydrogen or helium atmosphere, and the cooling of the SDS bed by radiation only and by both radiation and natural convection related to the reuse cycle, were obtained.

Keywords

Flow circulation Hydrogen isotope storage and delivery system (SDS) Hydrogen Helium blanketing effect Thermophysicochemical properties Zirconium cobalt (ZrCo) 

Notes

Acknowledgements

This research was supported by the National Fusion Research Institute and the National R&D Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Science and ICT, and Ministry of Trade, Industry and Energy (2009-0070685). The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. ITER is a Nuclear Facility INB-174.

References

  1. 1.
    K. Jung, Y. Kim, H. Chung, H.-S. Kang, S.-H. Yun, D.-H. Ahn, Fusion Sci. Technol. 71, 416–421 (2017)CrossRefGoogle Scholar
  2. 2.
    M.H. Chang, S.-H. Yun, H.-G. Kang, S. Cho, K.-M. Song, D. Kim, H. Chung, P. Camp, W. Shu, S. Willms, M. Glugla, Fusion Eng. Des. 89, 1557–1561 (2014)CrossRefGoogle Scholar
  3. 3.
    K.-M. Song, S.H. Sohn, H. Chung, S.-H. Yun, K.J. Jung, Korean Chem. Eng. Res. 50, 595–603 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Chung, D. Chung, J. Lee, D. Koo, J. Lee, C. Lee, K.-S. Seo, J.S. Yoon, E.H. Lee, D.W. Lee, H.-G. Kang, M.H. Chang, S. Cho, S.-H. Yun, C.S. Kim, K.J. Jung, P. Camp, S. Willms, D.-H. Ahn, H. Lee, Fusion Eng. Des. 87, 448–453 (2012)CrossRefGoogle Scholar
  5. 5.
    H.-G. Kang, S. Cho, M.-K. Lee, S.-H. Yun, M.H. Chang, H. Chung, D. Koo, K.-M. Song, D. Kim, Fusion Eng. Des. 86, 2196–2199 (2011)CrossRefGoogle Scholar
  6. 6.
    J.E. Klein, P.J. Foster, Fusion Sci. Technol. 60, 964–967 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Cho, M.H. Chang, S.-H. Yun, H.-G. Kang, K.J. Jung, H. Chung, D. Koo, Y. Kim, J. Lee, K.-M. Song, S.-H. Sohn, K. Kim, D.-J. Kim, IEEE Trans. Plasma Sci. 38, 425–433 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    H. Chung, Y. Kim, K. Jung, S. Paek, H.-S. Kang, K.H. Kim, W. Shon, S.P. Yim, H.-G. Kang, M.H. Chang, S.-H. Yun, K.J. Jung, K.H. Kim, D.-H. Ahn, Fusion Sci. Technol. 71, 622–627 (2017)Google Scholar
  9. 9.
    S.-H. Yun, S. Cho, M.H. Chang, H.-G. Hang, M.K. Lee, J.K. Jung, P.K. Young, H. Chung, D. Koo, K.-M. Song, Fusion Sci. Technol. 60, 373–378 (2011)CrossRefGoogle Scholar
  10. 10.
    S.-H. Yun, S. Cho, M.H. Chang, H.-G. Kang, K.J. Jung, H. Chung, M.H. Shim, K.-M. Song, Fusion Sci. Technol. 56, 867–872 (2009)CrossRefGoogle Scholar
  11. 11.
    R.-D. Penzhorn, M. Devillers, M. Sirch, J. Nucl. Mater. 170, 217–231 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    A. Yoshida, W. Luangdilok, T. Ogura, Y. Naka, Int. J. Thermophys. 10, 1093–1102 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    W.T. Shmayda, P. Mayer, J. Less-Commun. Met. 104, 239–250 (1984)CrossRefGoogle Scholar
  14. 14.
    M.H. Chang, Y.H. Oh, S.-H. Yun, H.-G. Kang, D. Chung, H. Chung, K.-M. Song, in The 12th International Symposium on Fusion Nuclear Technology (ISFNT-12) (2015)Google Scholar
  15. 15.
    J.M. Miller, C.L. Cantlon, in Atomic Energy of Canada Limited, Report AECL-7698 (1982)Google Scholar
  16. 16.
    W.J. Holtslander, J.M. Yaraskavitch, in Atomic Energy of Canada Limited, Report AECL-7151 (1981)Google Scholar
  17. 17.
    T. Hayashi, T. Suzuki, M. Yamada, W. Shu, T. Yamanishi, Fusion Eng. Des. 83, 1429–1432 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Konishi, T. Nagasaki, N. Yokokawa, Y. Naruse, Fusion Eng. Des. 10, 355–358 (1989)CrossRefGoogle Scholar
  19. 19.
    D. Chung, J. Lee, D. Koo, H. Chung, K.H. Kim, H.-G. Kang, M.H. Chang, P. Camp, K.J. Jung, S. Cho, S.-H. Yun, C.S. Kim, H. Yoshida, S. Paek, H. Lee, Fusion Eng. Des. 88, 2276–2279 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Hara, T. Okabe, K. Mori, K. Watanabe, Fusion Eng. Des. 49–50, 831–838 (2000)CrossRefGoogle Scholar
  21. 21.
    N. Bekris, U. Besserer, M. Sirch, R.-D. Penzhorn, Fusion Eng. Des. 49–50, 781–789 (2000)CrossRefGoogle Scholar
  22. 22.
    K. Watanabe, M. Hara, M. Matsuyama, I. Kanesaka, T. Kabutomori, Fusion Technol. 28, 1437–1442 (1995)CrossRefGoogle Scholar
  23. 23.
    S. Konishi, T. Nagasaki, K. Okuno, J. Nucl. Mater. 223, 294–299 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    S. Konishi, T. Nagasaki, T. Hayashi, K. Okuno, Fusion Technol. 26, 668–672 (1994)CrossRefGoogle Scholar
  25. 25.
    M. Devillers, M. Sirch, R.-D. Penzhorn, Chem. Mater. 4, 631–639 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kwangjin Jung
    • 1
    • 2
  • Hee-Seok Kang
    • 2
  • Sei-Hun Yun
    • 3
  • Hongsuk Chung
    • 1
    • 2
    Email author
  1. 1.University of Science and Technology (UST)DaejeonKorea
  2. 2.Korea Atomic Energy Research Institute (KAERI)DaejeonKorea
  3. 3.National Fusion Research Institute (NFRI)DaejeonKorea

Personalised recommendations