Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

  • Megumi AkoshimaEmail author
  • Satoru Takahashi
Asian Thermophysical Properties Conference
Part of the following topical collections:
  1. Asian Thermophysical Properties Conference Papers


Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.


Anisotropy Flash method Thermal barrier coating (TBC) Thermal diffusivity 



This study was supported financially by the Ministry of Economy, Trade and Industry (METI) of Japan. Part of this work was supported by JSPS KAKENHI Grant Number 15K06490. The authors thank Mr. Yoshihiro Kobayashi, who has graduated the master’s course at the Tokyo Metropolitan University graduate school for his contribution in analyzing the TC cross sections.


  1. 1.
    X.Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 24, 1–10 (2004)CrossRefGoogle Scholar
  2. 2.
    K.E. Wilkes and J.F. Lagedrost, Thermophysical properties of plasma sprayed coatings. NASA Report NASA-CR-121144 (1973)Google Scholar
  3. 3.
    R. Brandt, L. Pawlowski, G. Neuer, High-Temp. High-Press. 18, 65–77 (1986)Google Scholar
  4. 4.
    R.E. Taylor, Mater. Sci. Eng. A 245, 160–167 (1998)CrossRefGoogle Scholar
  5. 5.
    F. Cernuschi, P. Bianchi, M. Leoni, P. Scardi, J. Therm. Spray Technol. 8, 102–109 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    N. Markocsan, P. Nylén, J. Wigren, X.-H. Li, J. Therm. Spray Technol. 16, 498–505 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J. Hartman, O. Nilsson, J. Fricke, High-Temp. High Press. 25, 403–410 (1993)Google Scholar
  8. 8.
    M. Akoshima, T. Tanaka, S. Endo, T. Baba, Y. Harada, Y. Kojima, A. Kawasaki, F. Ono, Jpn. J. Appl. Phys. 50, 11RE01 (2011)CrossRefGoogle Scholar
  9. 9.
    K.B. Larson, Karl Koyama, J. Appl. Phys. 39, 4408–4416 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Lee, R.E. Taylor, Therm. Conduct. 14, 423–434 (1976)CrossRefGoogle Scholar
  11. 11.
    N. Araki, A. Makino, T. Ishiguro, J. Mihara, Int. J. Thermophys. 13, 515–538 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    T. Baba, Jpn. J. Appl. Phys. 48, 05EB04 (2009)Google Scholar
  13. 13.
    N. Takayama, K. Hosono, in Proceedings of 17th Japan Symposium on Thermophysical Properties (1996) 375–377 [in Japanese]Google Scholar
  14. 14.
    ISO 18555:2016, Metallic and other inorganic coatings—Determination of thermal conductivity of thermal barrier coatings (2016)Google Scholar
  15. 15.
    A.H. Rossette et al., Appl. Therm. Eng. 29, 3056 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Ogawa, Netsu Bussei 21, 8–13 (2007). [in Japanese]CrossRefGoogle Scholar
  17. 17.
    S. Takahashi, M. Akoshima, T. Tanaka, M. Ogawa, N. Oikawa, Netsu Bussei 30, 176–181 (2016). [in Japanese]CrossRefGoogle Scholar
  18. 18.
    W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, J. Appl. Phys. 32, 1679 (1961)ADSCrossRefGoogle Scholar
  19. 19.
    R. Cowan, J. Appl. Phys. 34–4, 926–927 (1963)ADSCrossRefGoogle Scholar
  20. 20.
    D.A. Watt, Brit. J. Appl. Phys. 17, 231–240 (1966)ADSCrossRefGoogle Scholar
  21. 21.
    J.A. Cape, G.W. Lehman, J. Appl. Phys. 34–7, 1909–1913 (1963)ADSCrossRefGoogle Scholar
  22. 22.
    D. Josell, J. Warren, A. Cezairliyan, J. Appl. Phys. 78–11, 6867–6869 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    T. Azumi, Y. Takahashi, Rev. Sci. Instrum. 52, 1411–1413 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    A.B. Donaldson, R.E. Taylor, J. Appl. Phys. 46, 4584–4589 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    ISO 18755:2005, Fine ceramics (advanced ceramics, advanced technical ceramics)—Determination of thermal diffusivity of monolithic ceramics by laser flash method (2005)Google Scholar
  26. 26.
    P. Ctibor, O. Roussel, A. Tricoire, J. Eur. Ceram. Soc. 23, 2993–3999 (2003)CrossRefGoogle Scholar
  27. 27.
    M. Akoshima, B. Hay, M. Neda, M. Grelard, Int. J. Thermophys. 34, 778–791 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    R. Dutton, R. Wheeler, K.S. Ravichandran, K. An, J. Therm. Spray Technol. 9, 204–209 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Tokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations