Advertisement

Predicting \(\hbox {CO}_{2}\) Solubility in Imidazole Ionic Liquids for Use in Absorption Refrigeration Systems by Using the Group Contribution Equation of State Method

  • Wei-Dong WuEmail author
  • Jun Wu
  • Yong Hou
  • Lin Su
  • Hua Zhang
Article

Abstract

Traditional absorption refrigeration such as \(\hbox {H}_{2}\hbox {O}\)–LiBr- and \(\hbox {NH}_{3}\)\(\hbox {H}_{2}\hbox {O}\)-based refrigeration has limited applications because of several issues, including crystallization, corrosion, and large volume. \(\hbox {CO}_{2}\)–ionic liquids (ILs) as new absorption working pairs were investigated in this study. The objective was to use the group contribution equation of state (GC-EOS) method to predict the solubilities of binary systems containing high-pressure \(\hbox {CO}_{2}\)–imidazole bis(trifluoromethanesulfonimide) ILs and to investigate the applicability and accuracy of the GC-EOS model. The results showed that at pressures up to 11.0 MPa and temperatures of 273 K to 400 K, the \(\hbox {CO}_{2}\) solubility in the ILs increased with increasing system pressure but decreased with increasing temperature, and its variation rate was lower at higher pressures or temperatures. Also, \(\hbox {CO}_{2}\) solubility increased in the order of [emim][\(\hbox {Tf}_{2}\hbox {N}\)] < [bmim][\(\hbox {Tf}_{2}\hbox {N}\)] < [hmim][\(\hbox {Tf}_{2}\hbox {N}\)] < [omim][\(\hbox {Tf}_{2}\hbox {N}\)], indicating that longer alkyl chains of identical IL families resulted in higher \(\hbox {CO}_{2 }\) solubility. The model prediction of \(\hbox {CO}_{2}\) solubility in the four different ILs showed reasonable consistency with the corresponding experimental results from the literature; the largest deviation was 5.7 % for \(\hbox {CO}_{2}\)-[emim][\(\hbox {Tf}_{2}\hbox {N}\)]. Therefore, it can be concluded that the GC-EOS model is a promising theoretical solution that can be used to search for suitable \(\hbox {CO}_{2}\)–IL working pairs for absorption refrigeration systems.

Keywords

Absorption refrigeration \(\hbox {CO}_{2} \) Group contribution equation of state (GC-EOS) Ionic liquids (ILs) Solubility Working pair 

Notes

Acknowledgements

This work was supported by the National Natural Science Fund of China (No. 51676129), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (SRF for ROCS, SEM), and the Natural Science Foundation of Shanghai (No. 14ZR1429000).

References

  1. 1.
    I. Sarbu, C. Sebarchievici, Energy Convers. Manag. 105, 403–422 (2015)CrossRefGoogle Scholar
  2. 2.
    A.H.M. Fauzi, N.A.S. Amin, Energy Convers. Manag. 76, 818–827 (2013)CrossRefGoogle Scholar
  3. 3.
    D.S. Ayou, M.R. Currás, D. Salavera, J. García, J.C. Bruno, A. Coronas, Energy Convers. Manag. 84, 512–523 (2014)CrossRefGoogle Scholar
  4. 4.
    S.S. Moganty, P.S. Chinthamanipeta, V.K. Vendra, S. Krishnan, R.E. Baltus, Chem. Eng. J. 25, 0377–389 (2014)CrossRefGoogle Scholar
  5. 5.
    Á. Martín, M.D. Bermejo, J. Supercrit. Fluids 55, 852–859 (2010)CrossRefGoogle Scholar
  6. 6.
    X.L. Zheng, Theoretic study on performance of transcritical \(\text{CO}_{2}\)-[emim][\(\text{ Tf }_{2}\)N] absorption refrigeration cycle driven by low-grade energy. M thesis, Inner Mongolia University of Science & Technology, 2014, pp. 41–43Google Scholar
  7. 7.
    M. Sen, S. Paolucci, Using carbon dioxide and ionic liquids for absorption refrigeration, in 7th IIR Gustav Lorentzen Conference on Natural working Fluids (Trondheim, Norway, 2006)Google Scholar
  8. 8.
    Y. Huang, Q. Yang, E.C. Luo, J.Y. Hu, Refrigeration 37, 47–52 (2009). [in Chinese]Google Scholar
  9. 9.
    M.D. Bermejo, A. Martin, G. Foco, M.J. Cocero, S.B. Bottini, C.J. Peters, J. Supercrit. Fluids 50, 112–117 (2009)CrossRefGoogle Scholar
  10. 10.
    T. Banerjee, M.K. Singh, A. Khanna, Ind. Eng. Chem. Res. 45, 3207–3219 (2006)CrossRefGoogle Scholar
  11. 11.
    J.K. Shah, E.J. Maginn, J. Phys. Chem. B 109, 10395–10405 (2005)CrossRefGoogle Scholar
  12. 12.
    R. Kato, M. Krummen, J. Gmehling, Fluid Phase Equilib. 224, 47–54 (2004)CrossRefGoogle Scholar
  13. 13.
    P. Scovazzo, D. Camper, J. Kieft, J. Poshusta, C. Koval, R. Noble, Ind. Eng. Chem. Res. 43, 6855–6860 (2004)CrossRefGoogle Scholar
  14. 14.
    M.B. Shiflett, A. Yokozeki, Ind. Eng. Chem. Res. 44, 4453–4464 (2005)CrossRefGoogle Scholar
  15. 15.
    Y.S. Kim, W.Y. Choi, J.H. Jang, K.P. Yoo, C.S. Lee, Fluid Phase Equilib. 228, 439–445 (2005)CrossRefGoogle Scholar
  16. 16.
    J.E. Kim, J.S. Lim, J.W. Kang, Fluid Phase Equilib. 306, 251–255 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Skjold-Jørgensen, Fluid Phase Equilib. 16, 317–351 (1984)CrossRefGoogle Scholar
  18. 18.
    S. Skjold-Jørgensen, Ind. Eng. Chem. Res. 27, 110–118 (1988)CrossRefGoogle Scholar
  19. 19.
    B. Breure, S.B. Bottini, G.J. Witkamp, C.J. Peters, J. Phys. Chem. B. 111, 14265–14270 (2007)CrossRefGoogle Scholar
  20. 20.
    W.W. Gao, F.X. Zhang, G.X. Zhang, C.H. Zhou, Bio. Chem. Eng. J. 99, 67–84 (2015)Google Scholar
  21. 21.
    M.G. Freire, L.M.N.B.F. Santos, A.M. Fernandes, J.A.P. Coutinho, I.M. Marrucho, Fluid Phase Equilib. 261, 449–454 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Ahosseini, A.M. Scurto, Int. J. Thermophys. 29, 1222–1243 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    J.L. Anthony, J.L. Anderson, E.J. Maginn, J.F. Brennecke, J. Phys. Chem. B. 109, 6366–6374 (2005)CrossRefGoogle Scholar
  24. 24.
    K. Dong, S.J. Zhang, D.X. Wang, X.Q. Yao, J. Phys. Chem. A. 110, 9775–9782 (2006)CrossRefGoogle Scholar
  25. 25.
    G.A. Mansoori, T.W. Leland, J. Chem. Soc. 68, 320–344 (1972)Google Scholar
  26. 26.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635–636 (1969)ADSCrossRefGoogle Scholar
  27. 27.
    S. Espinosa, S. Diaz, E.A. Brignole, Ind. Eng. Chem. Res. 41, 1516–1527 (2002)CrossRefGoogle Scholar
  28. 28.
    E.J. González, S.B. Bottini, S. Pereda, E.A. Macedo, Fluid Phase Equilib. 362, 163–169 (2014)CrossRefGoogle Scholar
  29. 29.
    M.T.M. Martinez, M.C. Kroon, C.J. Peters, J. Supercrit. Fluids 101, 54–62 (2015)CrossRefGoogle Scholar
  30. 30.
    A.A.M. Beigi, M. Abdouss, M. Yousefi, S.M. Pourmortazavi, A. Vahid, J. Mol. Liq. 177, 361–368 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Vranes, N. Zec, A. Tot, S. Papovic, S. Dozic, S. Gadzuric, J. Chem. Therm. 68, 98–108 (2014)CrossRefGoogle Scholar
  32. 32.
    R.G. Azevedo, J.M.S.S. Esperanc, J. Szydlowski, Z.P. Visak, P.F. Pires, H.J.R. Guedes, L.P.N. Rebelo, J. Chem. Thermodyn. 37, 888–899 (2005)CrossRefGoogle Scholar
  33. 33.
    M.G. Montalban, C.L. Bolívar, F.G.D. Baños, G. Víllora, J. Chem. Eng. Data 60, 1986–1996 (2015)CrossRefGoogle Scholar
  34. 34.
    M.D. Bermejo, D. Mendez, A. Martın, Ind. Eng. Chem. Res. 49, 4966–4973 (2010)CrossRefGoogle Scholar
  35. 35.
    A.M. Schilderman, S. Raeissi, C.J. Peters, Fluid Phase Equilib. 260, 19–22 (2007)CrossRefGoogle Scholar
  36. 36.
    S.N.V.K. Aki, B.R. Mellein, E.M. Saurer, J.F. Brennecke, J. Phys. Chem. B. 108, 20355–20365 (2004)CrossRefGoogle Scholar
  37. 37.
    S. Raeissi, C. Peters, J. Chem. Eng. Data 54, 382–386 (2009)CrossRefGoogle Scholar
  38. 38.
    W. Ren, B. Sensenichl, A.M. Scurto, J. Chem. Thermodyn. 42, 305–311 (2010)CrossRefGoogle Scholar
  39. 39.
    M.J. Muldoon, S.N.V.K. Aki, J.L. Anderson, J.K. Dixon, J.F. Brennecke, J. Phys. Chem. B. 111, 9001–9009 (2007)CrossRefGoogle Scholar
  40. 40.
    A. Ahosseini, E. Ortega, B. Sensenich, A.M. Scurto, Fluid Phase Equilib. 286, 72–78 (2009)CrossRefGoogle Scholar
  41. 41.
    H.F. Hizaddina, M.K. Hadj-Kalib, I.M. AlNashefb, F.S. Mjallic, M.A. Hashima, J. Supercrit. Fluids 100, 184–193 (2015)CrossRefGoogle Scholar
  42. 42.
    X.Y. Ji, H. Adidharma, Fluid Phase Equilib. 293, 141–150 (2010)CrossRefGoogle Scholar
  43. 43.
    X.J. Wang, New Chem. Mater. 41, 13–16 (2013). (in Chinese)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wei-Dong Wu
    • 1
    Email author
  • Jun Wu
    • 1
  • Yong Hou
    • 1
    • 2
  • Lin Su
    • 1
  • Hua Zhang
    • 1
  1. 1.School of Energy and Power EngineeringUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Clean Republic SODO LLCSeattleUSA

Personalised recommendations