Advertisement

Study of the Solidification Dynamic of a Photocurable Resin by Photoacoustic

  • J. L. Jiménez-PérezEmail author
  • A. Cruz-Orea
  • P. Vieyra Pincel
  • Z. N. Correa-Pacheco
ICPPP 18
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

This paper reports on the photoacoustic (PA) study of a photopolymer (resin) that changes its physical properties when being irradiated with ultraviolet light from a xenon lamp. The wavelength range necessary for the curing of the resin, characterized by the PA technique, was found to be between 300 nm and 400 nm. PA measurements show a sigmoidal change of heat transport properties as a function of time during the curing process. By describing the PA signal evolution by a parametrized model, a characteristic curing time was introduced. The PA measurements were complemented with UV–Vis Spectroscopy, which was used to characterize the polymer in order to study the optical absorption. The proposed method can support the optimization of the settings of curing parameters in applications of stereolithography and 3D printing.

Keywords

3D Curing Photoacoustic Resin Stereolithography UV 

Notes

Acknowledgements

We would like to thank CONACYT, COFAA and CGPI-IPN, México. One of authors (A. Cruz-Orea) thanks the partial support for this research from Conacyt Project No. 241330.

References

  1. 1.
    M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, Ml C. McAlpine, NanoLetters 13(6), 2634 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    C. Stapleton, Inside Dent. Technol. 4(4), 01 (2013)Google Scholar
  3. 3.
    P.N. Patel, C.K. Smith, C.W. Patrick, J. Biomed. Mater. Res. A 73(3), 313–931 (2005)CrossRefGoogle Scholar
  4. 4.
    David H. Freedman, Layer by layer. Technol. Rev. 115(1), 50 (2012)Google Scholar
  5. 5.
    F.L. Dumas, F.R. Marciano, L.V.F. Oliveira, P.R. Barja, D. Acosta Avalos, Med. Eng. Phys. 29, 980 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Martinez Torres, A. Mandelis, J.J. Alvarado Gil, J. Appl. Phys. 108, 054902 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. Christ, J. Szurkowski, Instrum. Sci. Technol. 29(2), 91 (2001)CrossRefGoogle Scholar
  8. 8.
    G. Bogoeva-Gaceva, A. Bužarovska, Maced. J. Chem. Chem. Eng. 32(2), 337 (2013)Google Scholar
  9. 9.
    A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    M. Vargas-Luna, G. Gutierrez, J.M. Rodriguez Viscaino, J.B. Varela Najera, J.M. Rodriguez Palencia, J. Bernal-Alvarado, M. Sousa, J.J. Alvarado-Gil, J. Phys. D Appl. Phys. 35, 1532 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A.M. Manzanares, A.C. Bento, H. Vargas, N.F. Leite, L.C.M. Miranda, Phys. Rev. B 42, 4477 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • J. L. Jiménez-Pérez
    • 1
    Email author
  • A. Cruz-Orea
    • 2
  • P. Vieyra Pincel
    • 1
  • Z. N. Correa-Pacheco
    • 3
  1. 1.UPIITA-Instituto Politécnico NacionalCiudad de MéxicoMexico
  2. 2.Departamento de FísicaCINVESTAV-IPNCiudad de MéxicoMexico
  3. 3.CEPROBI-Instituto Politécnico NacionalMorelosMexico

Personalised recommendations