Advertisement

Measurements of Thermal Conductivity and Thermal Diffusivity of Hen Egg-White Lysozyme Crystals and Its Solution Using the Transient Short Hot Wire Method

  • Seiji FujiwaraEmail author
  • Syou Maki
  • Ryunosuke Maekawa
  • Seiichi Tanaka
  • Masayuki Hagiwara
Asian Thermophysical Properties Conference
  • 181 Downloads
Part of the following topical collections:
  1. Asian Thermophysical Properties Conference Papers

Abstract

Protein crystals are an essentially important biological sample to advance the analysis of X-ray structure, but their thermophysical properties, especially thermal conductivity and thermal diffusivity, have not been studied sufficiently. This current situation can be attributed to various kinds of technical problems; e.g., the fragility of protein crystals and the difficulty of nucleation control. Ideally speaking, protein crystallization should be carried out under a “containerless condition” to eliminate any mechanical distortion of the crystals from the walls. To realize the condition, we have developed an original crystallization method by means of the magneto-Archimedes effect. In this paper, a transient short hot wire method was combined with the technique of magneto-Archimedes effect to realize simultaneous measurement of thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals. As the results, thermal conductivity and thermal diffusivity of HEWL crystals were found to be 0.410–0.438 \(\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\) and 3.77–\(5.18\times 10^{-8}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\), respectively. We clarified by the crystallizing process of HEWL that the crystals were magnetically levitated at the air–liquid interface and the short hot wire was completely buried into them as the crystals grew. We also measured the HEWL solution by the same methods. The thermal conductivity of the solution had almost the same value as that of water and had little dependency on the concentration of HEWL, but the thermal diffusivity was unclear.

Keywords

Lysozyme Magneto-Archimedes effect Magnetic levitation Thermal conductivity Thermal diffusivity Transient hot wire method 

Notes

Acknowledgements

This research was supported by MEXT/JSPS, KAKENHI, Grant Number JP15K04669 and JP17K06215. In addition, we were supported by the Osaka Ohtani University Research Fund (Pharmaceutical Sciences). This work was carried out at the Center for Advanced High Magnetic Field Science in Osaka University under the Visiting Researcher’s Program of the Institute for Solid State Physics, the University of Tokyo. The superconducting magnet in this work belongs to Dr. Satoshi Tomita, Quantum Material Science Laboratory, Graduate School of Material Science, Nara Institute of Science and Technology. We would like to express our deepest gratitude to Professor Emeritus Fujii of Kyushu University, who was a former professor of Maki and Fujiwara, for his great and heartfelt research guidance.

References

  1. 1.
    T.M. Bergfors, in IUL Biotechnology Series, (International University Line, 2009), p. 363 (ISBN: 978-0-9720774-4-6)Google Scholar
  2. 2.
    B. Lorber, R. Giegé, J. Cryst. Growth 168, 204 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    N.E. Chayen, Protein Eng. 9, 927 (1996)CrossRefGoogle Scholar
  4. 4.
    H. Adachi, T. Watanabe, M. Yoshimura, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 41, L 726 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    H. Adachi, K. Takano, M. Morikawa, S. Kanaya, M. Yoshimura, Y. Mori, T. Sasaki, Acta Cryst. D 59, 194 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Adachi, A. Niino, H. Matsumura, K. Takano, T. Inoue, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 43, 6264 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    S.K. Chung, E.H. Trinh, J. Cryst. Growth 194, 384 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    S. Santesson, E.S. Cedergren-Zeppezauer, T. Johansson, T. Laurell, J. Nilsson, S. Nilsson, Anal. Chem. 75, 1733 (2003)CrossRefGoogle Scholar
  9. 9.
    W.K. Rhim, S.K. Chung, J. Cryst. Growth 110, 293 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    S. Maki, Y. Oda, M. Ataka, J. Cryst. Growth 261, 557 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    M. Ataka, S. Maki, Jpn. Patent 4,273,222, 2002Google Scholar
  12. 12.
    S. Maki, Biomed. Soft Comput. Hum. Sci. 19, 7 (2014)Google Scholar
  13. 13.
    M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, Int. J. Thermophys. 18, 327 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    T. Tomimura, S. Maki, X. Zhang, M. Fujii, Jpn. J. Thermophys. Prop. 15, 9 (2001)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, S. Mikeda, H. Wicaksono, S. Fujiwara, and M. Fujii, in Proceedings of the 6th Asian Thermophysical Properties Conference, vol. 1, p. 36 (2001)Google Scholar
  16. 16.
    X. Zhang, H. Wicaksono, S. Fujiwara, M. Fujii, High Temp. High Press. 34, 617 (2002)CrossRefGoogle Scholar
  17. 17.
    Y. Ikezoe, N. Hirota, J. Nakagawa, K. Kitazawa, Nature 393, 749 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    M. Faraday, Philos. Mag. 31, 401 (1847)Google Scholar
  19. 19.
    T. Kimura, S. Mamada, M. Yamato, Chem. Lett. 29, 1294 (2000)CrossRefGoogle Scholar
  20. 20.
    A.T. Catherall, L. Eaves, P.J. King, S.R. Booth, Nature 422, 579 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    N. Hirota, M. Kurashige, M. Iwasaka, M. Ikehata, H. Uetake, T. Takayama, H. Nakamura, Y. Ikezoe, S. Ueno, K. Kitazawa, Physica B 346, 267 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    P. López-Alcaraz, A.T. Catherall, R.J. Hill, M.C. Leaper, M.R. Swift, P.J. King, Eur. Phys. J. E 24, 145 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Hayashi, F. Mishima, Y. Akiyama, S. Nishijima, I.E.E.E. Trans, Appl. Supercond. 20, 945 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    S. Makis, N. Hirota, J. Food Eng. 120C, 31 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Maki, Y. Tanimoto, C. Udagawa, S. Morimoto, M. Hagiwara, Jpn. J. Appl. Phys. 55, 035505-1 (2016)ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    Japan Society of Thermophysical Properties, Thermophysical Properties Handbook (Yokendo, Tokyo, 2008)Google Scholar
  28. 28.
    T. Okabe, J. Okajima, A. Komiya, I. Takahashi, S. Maruyama, Trans. JSME B 79, 2264 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Liu, W.-J. Yang, J. Thermophys. Heat Transf. 6, 531 (1992)CrossRefGoogle Scholar
  30. 30.
    H. Adachi, K. Takano, M. Yoshimura, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 41, L1025–L1027 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    M. Yaoi, H. Adachi, K. Takano, H. Matsumura, T. Inoue, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 43, L686–L688 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology, Akashi CollegeAkashiJapan
  2. 2.Faculty of PharmacyOsaka Ohtani UniversityTondabayashiJapan
  3. 3.Center for Advanced High Magnetic Field Science, Graduate School of ScienceOsaka UniversityToyonakaJapan

Personalised recommendations