Elastic Evaluation of Poly(Lactic Acid) Electrospun Membranes Using the Pulsed Photoacoustic Technique

  • M. NavarreteEmail author
  • R. Vera-Graziano
  • A. Maciel-Cerda
  • F. M. Sánchez-Arévalo
  • F. A. Godínez
Part of the following topical collections:
  1. 3rd Conference on Photoacoustic and Photothermal Theory and Applications


Fibrous membranes manufactured by electrospinning possess unique features such as a high porosity and large specific surface area, making them suitable for applications in tissue engineering. However, the determination of their mechanical behavior under different loading conditions remains one of the most difficult technical problems for researchers to overcome. While the tensile properties of this kind of membrane are commonly reported in the literature, few explorations of their properties in other directions have been reported. In this paper, the pulsed photoacoustic technique is employed to obtain the elastic constants of electrospun non-woven membranes, specifically in two directions (LT). The electrospun samples are hybrid fiber membranes of poly(lactic acid) and hydroxyapatite (HA) nanoparticles at different concentrations. It is found that the concentration of HA nanoparticles determines the mechanical response of the membrane, where the nanoparticles act either as a reinforcement or as a mesh defect. The elastic constants (\(E_{L}, E_{T}, G_{L}, G_{T}, v_{L}\), \(\nu _{T}\)) are obtained through velocity waves related to the stress–strain equations, using samples with two different geometries and considering the electrospinning mats as a transversely isotropic material. These values are compared to those acquired using macro-tensile testing equipment according to the ASTM D1708 standard.

Graphical Abstract


Electrospinning Electrospun composites Fiber membranes Mechanical properties PLA–hydroxyapatite Pulsed photoacoustic technique 



This work was supported by DGAPA-PAPIIT-UNAM under Grants IN106515, IN105117 and IN108116 as well by II-UNAM under Grant 6593.


  1. 1.
    L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Yao, H. Deng, F. Mai, K. Wang, Q. Zhang, F. Chen, Q. Fu, Express Polym. Lett. 5, 937 (2011)CrossRefGoogle Scholar
  3. 3.
    B. Gupta, N. Revagade, J. Hilborn, Prog. Polym. Sci. 32, 455 (2007)CrossRefGoogle Scholar
  4. 4.
    V. Beachley, X. Wen, Prog. Polym. Sci. 35, 868 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Zheng-Ming, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Zeleny, Phys. Rev. 10, 1 (1917)ADSCrossRefGoogle Scholar
  7. 7.
    C. Wang, H.S. Chien, K.W. Yan, C.L. Hung, K.L. Hung, S.J. Tsai, Polymer 50, 6100 (2009)CrossRefGoogle Scholar
  8. 8.
    P.P. Molamma, J. Venugopal, S. Ramakrishna, Acta Biomater. 5, 2884 (2009)CrossRefGoogle Scholar
  9. 9.
    G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, S. Ryu, J. Biomed. Mater. Res. A 82, 445 (2006)Google Scholar
  10. 10.
    J.H. Chang, Y.U. An, D. Cho, E.P. Ginnelis, Polymer 44, 3715 (2003)CrossRefGoogle Scholar
  11. 11.
    C.L. Pai, M.C. Boyse, G.C. Rutledge, Polymer 52, 2295 (2011)CrossRefGoogle Scholar
  12. 12.
    F. Croisier, A.-S. Duwez, C. Jérome, A.F. Leonard, K.O. van der Werf, P.J. Dijkstra, M.L. Bennink, Acta Biomater. 8, 218 (2012)CrossRefGoogle Scholar
  13. 13.
    J.J. Liao, T.-B. Hu, C.-W. Chang, Int. J. Rock Mech. Min. Sci. 34, 1045 (1997)CrossRefGoogle Scholar
  14. 14.
    T.D. Rossing, D.A. Russell, Am. J. Phys. 58, 1153 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    M. Navarrete, M. Villagrán, Rev. Sci. Instrum. 74, 479 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M. Navarrete, R. Vera-Graziano, J. Pineda, J. Appl. Polym. Sci. 111, 1199 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Navarrete, F. Serranía, M. Villagrán, J. Bravo, R. Guinovart, R. Rodríguez, Mech. Adv. Mater. Struct. 9, 157 (2002)CrossRefGoogle Scholar
  18. 18.
    E.H. Kerner, Proc. Phys. Soc. B 69, 808 (1956)ADSCrossRefGoogle Scholar
  19. 19.
    W.M. Madigosky, R.W. Harrison, K.P. Scharnhorst, Polym. Mater. Sci. Eng. 60, 489 (1989)Google Scholar
  20. 20.
    R.L. Kligman, W.M. Madigosky, J.R. Barlow, J. Acoust. Soc. Am. 70, 1437 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    C.B. Scruby, L.E. Drain, in Laser Ultrasonics: Techniques and Applications, ed. by C.B. Scruby, L.E Drain (Hilger, Neew York, 1990)Google Scholar
  22. 22.
    ASTM D1708-10, Standard test method for tensile properties of plastics by use of microtensile specimen. ASTM 08.01 Plastics (I): D256–D3159 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Navarrete
    • 1
    Email author
  • R. Vera-Graziano
    • 2
  • A. Maciel-Cerda
    • 2
  • F. M. Sánchez-Arévalo
    • 2
  • F. A. Godínez
    • 3
  1. 1.Instituto de Ingeniería, Edificio 12 Circuito ExteriorC. U., Universidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de Investigación en MaterialesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Instituto Tecnológico de ChihuahuaChihuahuaMexico

Personalised recommendations