Advertisement

Photoacoustic Microscopy of Vickers Indentations in Metals with Piezoelectric Detection

  • A. L. Glazov
  • N. F. Morozov
  • K. L. MuratikovEmail author
CPPTA3
Part of the following topical collections:
  1. 3rd Conference on Photoacoustic and Photothermal Theory and Applications

Abstract

The effect of mechanical stress influence on the thermoelastic photoacoustic signals inside Vickers indents in steel and nanonickel has been experimentally demonstrated. It has been shown that photoacoustic signal changes due to external stresses can be reversible or irreversible, depending on the indent orientation and the stress applied to the sample. Reversible changes in the photoacoustic signal can reach significant values at the level of tens percent of the average signal amplitude from the sample. Relative changes in the photoacoustic signal amplitudes have been theoretically evaluated for Vickers-indented and non-indented areas, taking into account the dependence of the elastic modulus of metals on temperature. It has been shown that this theoretical consideration provides qualitative explanation of differences in the behavior of photoacoustic signals under stress in indented and non-indented areas in metals.

Keywords

Mechanical stress Metals Nanometals Photoacoustics Scanning microscopy Thermoelasticity Vickers indent 

Notes

Acknowledgements

This study was supported by the Russian Science Foundation (Project No. 15-19-00182).

References

  1. 1.
    Y.H. Lee, D. Kwon, Acta Mater. 52, 1555 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Gibmeier, S. Hartmann, B. Scholtes, Mater. Sci. Forum 490–491, 454 (2005)CrossRefGoogle Scholar
  3. 3.
    K. Durst, B. Backes, O. Franke, M. Goken, Acta Mater. 54, 2547 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Suganuma, J. Am. Ceram. Soc. 78, 2889 (1995)CrossRefGoogle Scholar
  5. 5.
    M. Suganuma, J. Am. Ceram. Soc. 82, 3113 (1999)CrossRefGoogle Scholar
  6. 6.
    A.L. Glazov, N.F. Morozov, K.L. Muratikov, Tech. Phys. Lett. 42, 67 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    L. Berquez, D.M. Dessus, J.L. Franceschi, Jpn. J. Appl. Phys. 42, L1198 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    T. Hoshimiya, M. Hatake-Yama, Open J. Acoust. 3, 8 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    K.L. Muratikov, A.L. Glazov, D.N. Rose, J.E. Dumar, J. Appl. Phys. 88, 2948 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    K.L. Muratikov, A.L. Glazov, Tech. Phys. 45, 1025 (2000)CrossRefGoogle Scholar
  11. 11.
    K.L. Muratikov, A.L. Glazov, D.N. Rose, J.E. Dumar, High Temp. High Press. 34, 585 (2002)CrossRefGoogle Scholar
  12. 12.
    K.L. Muratikov, A.L. Glazov, Tech. Phys. 48, 1028 (2003)CrossRefGoogle Scholar
  13. 13.
    K.L. Muratikov, A.L. Glazov, D.N. Rose, J.E. Dumar, Rev. Sci. Instrum. 74, 3531 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    A.L. Glazov, N.F. Morozov, K.L. Muratikov, Phys. Solid State 58, 1679 (2016)CrossRefGoogle Scholar
  15. 15.
    G.A. Malygin, Phys. Solid State 42, 72 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    L.M. Lyamshev, Radiation Acoustics (CRC Press, Boca Raton, 2004)CrossRefGoogle Scholar
  17. 17.
    W. Nowacki, DynamicProblems of Thermoelasticity (Mir, Moscow, 1970). [in Russian]Google Scholar
  18. 18.
    A.K. Wong, R. Jones, J.G. Sparrow, J. Phys. Chem. Solids 48, 749 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    G. Pitarresi, E.A. Patterson, J. Strain Anal. 38, 405 (2003)CrossRefGoogle Scholar
  20. 20.
    A. Gallotti, A. Salerno, Meas. Sci. Technol. 18, 1250 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    V.Yu. Bodryakov, A.A. Povzner, I.V. Safonov, Tech. Phys. 51, 216 (2006)Google Scholar
  22. 22.
    I.N. Frantsevich, F.F. Voronov, S.A. Bakuta, Elastic Constants and Elastic Moduli for Metals and Non-metals (Naukova Dumka, Kiev, 1982). [in Russian]Google Scholar
  23. 23.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1970)zbMATHGoogle Scholar
  24. 24.
    Y.H. Pao, W. Sachse, H. Fukuoka, Physical Acoustics, vol. XVII (Academic, London, 1984)Google Scholar
  25. 25.
    A.N. Guz’, Elastic Waves in Solids with Initial Stresses, vol. 1 (Naukova Dumka, Kiev, 1986). [in Russian]Google Scholar
  26. 26.
    K.L. Muratikov, Tech. Phys. Lett. 36, 531 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    K.L. Muratikov, Tech. Phys. 56, 214 (2011)CrossRefGoogle Scholar
  28. 28.
    M.P. Savruk, A. Kazberuk, Int. Appl. Mech. 43, 182 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Yu.I. Golovin, Phys. Solid State 50, 2205 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Solid State ElectronicsIoffe InstituteSt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations