Advertisement

NRC Microwave Refractive Index Gas Thermometry Implementation Between 24.5 K and 84 K

  • P. M. C. RourkeEmail author
TEMPMEKO 2016
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

The implementation of microwave refractive index gas thermometry at the National Research Council between 24.5 K and 84 K is reported. A new gas-handling system for accurate control and measurement of experimental gas pressure has been constructed, and primary thermometry measurements have been taken using a quasi-spherical copper resonator and helium gas at temperatures corresponding to three defining fixed points of the International Temperature Scale of 1990 (ITS-90). These measurements indicate differences between the thermodynamic temperature T and ITS-90 temperature \(T_{90}\) of \(\left( T - T_{90} \right) = -0.60 \pm 0.56\) mK at \(T_{90} = 24.5561\) K, \(\left( T - T_{90} \right) = -2.0 \pm 1.3\) mK at \(T_{90} = 54.3584\) K, and \(\left( T - T_{90} \right) = -4.0 \pm 2.9\) mK at \(T_{90} = 83.8058\) K. The present results at \(T_{90} = 24.5561\) K and \(T_{90} = 83.8058\) K agree with previously reported measurements from other primary thermometry techniques of acoustic gas thermometry and dielectric constant gas thermometry, and the result at \(T_{90} = 54.3584\) K provides new information in a temperature region where there is a gap in other recent data sets.

Keywords

Polarizing gas thermometry Primary thermometry Refractive index gas thermometry RIGT Thermodynamic temperature \(T - T_{90}\) 

Notes

Acknowledgements

The author would like to thank the National Institute of Standards and Technology (NIST) for the loan of the copper resonator used in this study; T.A. Quance and D.W. Woods for technical assistance with the gas-handling system and pressure balance; I. Yang for mass spectrometer gas analysis; and L. Pitre, M. de Podesta, M.R. Moldover, R.M. Gavioso, C. Gaiser, J.W. Schmidt, K.D. Hill, A.D.W. Todd and S.N. Dedyulin for useful discussions.

References

  1. 1.
    H. Preston-Thomas, Metrologia 27, 3 (1990). doi: 10.1088/0026-1394/27/1/002 ADSCrossRefGoogle Scholar
  2. 2.
    H. Preston-Thomas, Metrologia 27, 107 (1990). doi: 10.1088/0026-1394/27/2/010 ADSCrossRefGoogle Scholar
  3. 3.
    J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12 (2011). doi: 10.1007/s10765-011-0922-1 ADSCrossRefGoogle Scholar
  4. 4.
    R.M. Gavioso, D.M. Ripa, P.P.M. Steur, C. Gaiser, T. Zandt, B. Fellmuth, M. de Podesta, R. Underwood, G. Sutton, L. Pitre, F. Sparasci, L. Risegari, L. Gianfrani, A. Castrillo, G. Machin, Philos. Trans. R. Soc. A 374, 20150046 (2016). doi: 10.1098/rsta.2015.0046 ADSCrossRefGoogle Scholar
  5. 5.
    L. Pitre, M.R. Moldover, W.L. Tew, Metrologia 43, 142 (2006). doi: 10.1088/0026-1394/43/1/020 ADSCrossRefGoogle Scholar
  6. 6.
    M.R. Moldover, R.M. Gavioso, J.B. Mehl, L. Pitre, M. de Podesta, J.T. Zhang, Metrologia 51, R1 (2014). doi: 10.1088/0026-1394/51/1/R1 CrossRefGoogle Scholar
  7. 7.
    R. Underwood, M. de Podesta, G. Sutton, L. Stanger, R. Rusby, P. Harris, P. Morantz, G. Machin, Philos. Trans. R. Soc. A 374, 20150048 (2016). doi: 10.1098/rsta.2015.0048 ADSCrossRefGoogle Scholar
  8. 8.
    C. Gaiser, T. Zandt, B. Fellmuth, Metrologia 52, S217 (2015). doi: 10.1088/0026-1394/52/5/S217 ADSCrossRefGoogle Scholar
  9. 9.
    C. Gaiser, B. Fellmuth, N. Haft, Metrologia 54, 141 (2017). doi: 10.1088/1681-7575/aa5389 ADSCrossRefGoogle Scholar
  10. 10.
    A.R. Colclough, Metrologia 10, 73 (1974). doi: 10.1088/0026-1394/10/2/006 ADSCrossRefGoogle Scholar
  11. 11.
    R.L. Rusby, Inst. Phys. Conf. Ser. Eur. Conf. Temp. Meas. 26, 44 (1975)Google Scholar
  12. 12.
    E.F. May, L. Pitre, J.B. Mehl, M.R. Moldover, J.W. Schmidt, Rev. Sci. Instrum. 75, 3307 (2004). doi: 10.1063/1.1791831 ADSCrossRefGoogle Scholar
  13. 13.
    J.W. Schmidt, R.M. Gavioso, E.F. May, M.R. Moldover, Phys. Rev. Lett. 98, 254504 (2007). doi: 10.1103/PhysRevLett.98.254504 ADSCrossRefGoogle Scholar
  14. 14.
    P.M.C. Rourke, K.D. Hill, Int. J. Thermophys. 36, 205 (2015). doi: 10.1007/s10765-014-1728-8 ADSCrossRefGoogle Scholar
  15. 15.
    B. Gao, L. Pitre, E.C. Luo, M.D. Plimmer, P. Lin, J.T. Zhang, X.J. Feng, Y.Y. Chen, F. Sparasci, Measurement 103, 258 (2017). doi: 10.1016/j.measurement.2017.02.039 CrossRefGoogle Scholar
  16. 16.
    M.R. Moldover, J. Res. Natl. Inst. Stand. Technol. 103, 167 (1998)CrossRefGoogle Scholar
  17. 17.
    A.G. Steele, The International Seminar on Low Temperature Thermometry and Dynamic Temperature Measurement, ed. by A. Szmyrka-Grzebyk (Wroclaw, 1997), pp L48–L53Google Scholar
  18. 18.
    P.M.C. Rourke, Metrologia 53, L1 (2016). doi: 10.1088/0026-1394/53/2/L1 ADSCrossRefGoogle Scholar
  19. 19.
    T. Tomaru, T. Suzuki, T. Haruyama, T. Shintomi, A. Yamamoto, T. Koyama, R. Li, Cryogenics 44, 309 (2004). doi: 10.1016/j.cryogenics.2004.02.003 ADSCrossRefGoogle Scholar
  20. 20.
    G. Ventura, L. Risegari, The Art of Cryogenics (Elsevier, Oxford, 2008). [ISBN:978-0-08-044479-6]Google Scholar
  21. 21.
    SAES MC1-902 specifications, document S110-472_H, DCN 4624. http://www.saespuregas.com (2016)
  22. 22.
    I. Yang, L. Pitre, M.R. Moldover, J. Zhang, X. Feng, J.S. Kim, Metrologia 52, S394 (2015). doi: 10.1088/0026-1394/52/5/S394 ADSCrossRefGoogle Scholar
  23. 23.
    K.D. Hill, M. Gotoh, Metrologia 33, 307 (1996). doi: 10.1088/0026-1394/33/4/4 ADSCrossRefGoogle Scholar
  24. 24.
    K.D. Hill, A.G. Steele, Metrologia 42, 278 (2005). doi: 10.1088/0026-1394/42/4/013 ADSCrossRefGoogle Scholar
  25. 25.
    Supplementary Information for the International Temperature Scale of 1990, Sèvres, Bureau International de Poids et Mesures, 1997 re-printing. http://www.bipm.org/utils/common/pdf/ITS-90/ITS-90-Supplementary-Info-1997.zip; ISBN:92-822-2111-3 (1990)
  26. 26.
    Guide to the Realization of the ITS-90: chapter 4. Interpolating Constant-Volume Gas Thermometry, Sèvres, Bureau International de Poids et Mesures, revised 19 March 2015. http://www.bipm.org/utils/common/pdf/ITS-90/Guide-ITS-90-GasThermometry-2015.pdf (2015)
  27. 27.
    N.J. Simon, E.S. Drexler, R.P. Reed, Properties of Copper and Copper Alloys at Cryogenic Temperatures (NIST Monograph 177, National Institute of Standards and Technology, Boulder, CO 1992)Google Scholar
  28. 28.
    NIST Cryogenic Materials Properties Database, OFHC Copper (UNS C10100/C10200) entry, revised 02/03/2010. http://cryogenics.nist.gov/MPropsMAY/OFHC%20Copper/OFHC_Copper_rev1.htm (2010)
  29. 29.
    B. Podobedov, Phys. Rev. ST Accel. Beams 12, 044401 (2009). doi: 10.1103/PhysRevSTAB.12.044401 ADSCrossRefGoogle Scholar
  30. 30.
    J.G. Hust, A.B. Lankford, Natl. Bur. Stand. Intern. Rep. NBSIR 84, 3007 (1984)Google Scholar
  31. 31.
    M. Puchalski, K. Piszczatowski, J. Komasa, B. Jeziorski, K. Szalewicz, Phys. Rev. A 93, 032515 (2016). doi: 10.1103/PhysRevA.93.032515 ADSCrossRefGoogle Scholar
  32. 32.
    A. Rizzo, C. Hättig, B. Fernández, H. Koch, J. Chem. Phys. 117, 2609 (2002). doi: 10.1063/1.1491402 ADSCrossRefGoogle Scholar
  33. 33.
    R. Moszynski, T.G.A. Heijmen, A. van der Avoird, Chem. Phys. Lett. 247, 440 (1995). doi: 10.1016/S0009-2614(95)01271-0 ADSCrossRefGoogle Scholar
  34. 34.
    D.F. Heller, W.M. Gelbart, Chem. Phys. Lett. 27, 359 (1974). doi: 10.1016/0009-2614(74)90241-3 ADSCrossRefGoogle Scholar
  35. 35.
    E.C. Kerr, R.H. Sherman, J. Low Temp. Phys. 3, 451 (1970). doi: 10.1007/BF00628215 ADSCrossRefGoogle Scholar
  36. 36.
    S. Kirouac, T.K. Bose, J. Chem. Phys. 64, 1580 (1976). doi: 10.1063/1.432383 ADSCrossRefGoogle Scholar
  37. 37.
    M. Lallemand, D. Vidal, J. Chem. Phys. 66, 4776 (1977). doi: 10.1063/1.433839 ADSCrossRefGoogle Scholar
  38. 38.
    M.P. White, D. Gugan, Metrologia 29, 37 (1992). doi: 10.1088/0026-1394/29/1/006 ADSCrossRefGoogle Scholar
  39. 39.
    L.W. Bruch, F. Weinhold, J. Chem. Phys. 113, 8667 (2000). doi: 10.1063/1.1318766 ADSCrossRefGoogle Scholar
  40. 40.
    P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016). doi: 10.1103/RevModPhys.88.035009 ADSCrossRefGoogle Scholar
  41. 41.
    W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012). doi: 10.1063/1.4712218 ADSCrossRefGoogle Scholar
  42. 42.
    G. Garberoglio, M.R. Moldover, A.H. Harvey, J. Res. Natl. Inst. Stand. Technol. 116, 729 (2011)CrossRefGoogle Scholar
  43. 43.
    K.R.S. Shaul, A.J. Schultz, D.A. Kofke, J. Chem. Phys. 137, 184101 (2012). doi: 10.1063/1.4764857 ADSCrossRefGoogle Scholar
  44. 44.
    G. Łach, B. Jeziorski, K. Szalewicz, Phys. Rev. Lett. 92, 233001 (2004). doi: 10.1103/PhysRevLett.92.233001 ADSCrossRefGoogle Scholar
  45. 45.
    W. Cencek, J. Komasa, K. Szalewicz, J. Chem. Phys. 135, 014301 (2011). doi: 10.1063/1.3603968 ADSCrossRefGoogle Scholar
  46. 46.
    W.C. Overton, J. Gaffney, Phys. Rev. 98, 969 (1955). doi: 10.1103/PhysRev.98.969 ADSCrossRefGoogle Scholar
  47. 47.
    H.M. Ledbetter, E.R. Naimon, J. Phys. Chem. Ref. Data 3, 897 (1974). doi: 10.1063/1.3253150 ADSCrossRefGoogle Scholar
  48. 48.
    J.R. Frederick, Thesis, University of Michigan (1947)Google Scholar
  49. 49.
    H.M. Ledbetter, Phys. Status Solidi A 66, 477 (1981). doi: 10.1002/pssa.2210660209 ADSCrossRefGoogle Scholar
  50. 50.
    C. Gaiser, B. Fellmuth, Phys. Status Solidi B 253, 1549 (2016). doi: 10.1002/pssb.201552717 ADSCrossRefGoogle Scholar
  51. 51.
    A.H. Harvey, E.W. Lemmon, Int. J. Thermophys. 26, 31 (2005). doi: 10.1007/s10765-005-2351-5 ADSCrossRefGoogle Scholar
  52. 52.
    R. Cuccaro, R.M. Gavioso, G. Benedetto, D. Madonna Ripa, V. Fernicola, C. Guianvarc’h, Int. J. Thermophys. 33, 1352 (2012). doi: 10.1007/s10765-011-1007-x ADSCrossRefGoogle Scholar
  53. 53.
    R.E. Honig, H.O. Hook, RCA Rev. 21, 360 (1960)Google Scholar
  54. 54.
    C. Gaiser, B. Fellmuth, EPL 90, 63002 (2010). doi: 10.1209/0295-5075/90/63002 ADSCrossRefGoogle Scholar
  55. 55.
    A.G. Steele, B. Fellmuth, D.I. Head, Y. Hermier, K.H. Kang, P.P.M. Steur, W.L. Tew, Metrologia 39, 551 (2002). doi: 10.1088/0026-1394/39/6/6 ADSCrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2017

Authors and Affiliations

  1. 1.National Research Council CanadaOttawaCanada

Personalised recommendations