Advertisement

Performance Maintenance of Dye-Sensitized Solar Cells Using a Latent Heat Storage Material

  • Naoto HarukiEmail author
  • Akihiko Horibe
ASIAN THERMOPHYSICAL PROPERTIES CONFERENCE PAPERS
  • 119 Downloads

Abstract

Recently, there has been considerable interest in various renewable energies. Among them, solar cell production has increased markedly because the photovoltaic is a clean and safe power generation method. The dye-sensitized solar cell (DSSC) has attracted much attention as an alternative to silicon solar cells due to lower manufacturing costs and plentiful resources for DSSC production. However, the performance of DSSCs has been limited by their durability and low photoelectric conversion efficiency. Temperature control of DSSCs via phase-change materials (PCMs) is expected to improve performance. In this study, DSSCs were heated or cooled with a heat exchanger copper block that was in contact with a PCM (heptadecane), while being irradiated by a solar simulator light source. The durability and photoelectric conversion efficiency of the DSSC improved under PCM temperature control.

Keywords

Durability Dye-sensitized solar cell Phase-change material Photoelectric conversion efficiency Solar irradiance 

List of symbols

\(A_{\mathrm{area}}\)

Area of DSSC \((\hbox {m}^{2})\)

Cp

Specific heat \((\hbox {J}{\cdot }\hbox {kg}^{-1}{\cdot }\hbox {K}^{-1})\)

h

Heat transfer coefficient \((\hbox {W}{\cdot }\hbox {m}^{-2}{\cdot }\hbox {K}^{-1})\)

I

Current (A)

\(I_{\underline{sc}}\)

Short-circuit current (A)

\(I_{\mathrm{max}}\)

Current at \(P_{\mathrm{max}}\) (A)

K

Overall heat transfer coefficient \((\hbox {W}{\cdot }\hbox {m}^{-2}{\cdot }\hbox {K}^{-1})\)

\(P_{\mathrm{in}}\)

Input solar energy (W)

\(P_{\mathrm{max}}\)

Maximum generated electric power of DSSC (W)

q

Heat flux \((\hbox {W}{\cdot }\hbox {m}^{-2})\)

V

Voltage when \(I = 0 \hbox { A}\) (V)

\(V_{\underline{oc}}\)

Open-circuit voltage (V)

\(V_{\mathrm{max}}\)

Voltage at \(P_{\mathrm{max}}\) (V)

L

Latent heat \((\hbox {kJ}{\cdot }\hbox {kg}^{-1})\)

\(L_{\mathrm{in}}\)

Input irradiance \((\hbox {W}{\cdot }\hbox {m}^{-2})\)

S

Solar irradiance \((\hbox {W}{\cdot }\hbox {m}^{-2})\)

t

Time (h)

\(T_{\mathrm{A}}\)

Ambient temperature \(({^{\circ }}\hbox {C})\)

\(T_{\mathrm{D}}\)

DSSC temperature \(({^{\circ }}\hbox {C})\)

\(T_{\mathrm{m}}\)

Melting temperature \(({^{\circ }}\hbox {C})\)

Greek Letters

\(\alpha _{\mathrm{D}}\)

Absorptivity of DSSC (–)

\(\varepsilon \)

Emissivity (–)

\(\eta \)

Photoelectric conversion efficiency (%)

\(\eta _{25^{\circ }{\mathrm{C}}}\)

Photoelectric conversion efficiency at \(T_\mathrm{D} = 25\,{^{\circ }}\hbox {C}\) (%)

\(\eta _{\mathrm{i}}\)

Initial photoelectric conversion efficiency (%)

\(\lambda \)

Thermal conductivity \((\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1})\)

\(\mu \)

Viscosity \((\hbox {Pa}{\cdot } \hbox { s})\)

\(\rho \)

Density \((\hbox {kg}{\cdot } \hbox {m}^{-3})\)

\(\rho _{\mathrm{cu}}\)

Reflectivity of copper (–)

\(\sigma \)

Stefan–Boltzmann constant \((\hbox {W}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-4})\)

\(\tau _{\mathrm{D}}\)

Transmissivity of DSSC (–)

Subscripts and Superscripts

\(25\,{^{\circ }}\hbox {C}\)

Value at \(T_\mathrm{D} = 25\,{^{\circ }}\hbox {C}\)

A

Ambient

Cu

Copper

D

DSSC

i

Initial value

in

Input value

m

Melting point

max

Maximum value

oc

Open-circuit

sc

Short-circuit

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 24560234. We thank T. Taguchi and Dr. T. Uchida (Associate Professor, Okayama University) for their contributions to these experiments.

References

  1. 1.
    CMC Publishing Co., Ltd., Development for Dye-Sensitized Solar Cells & Their Materials. (CMC Publishing Co., Ltd., Tokyo, 2008)Google Scholar
  2. 2.
    B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    H. Arakawa, KOGAKU 33, 27–31 (2004)Google Scholar
  4. 4.
    Y. Tachibana, J.E. Moser, M. Gratzel, D.R. Klug, J.R. Durrant, J. Phys. Chem. 100, 9577–9578 (1996)CrossRefGoogle Scholar
  5. 5.
    Md.K. Nazeeruddin, P. Péchy, M. Grätzel, Chem. Commun. 1997, 1705–1706 (1997)Google Scholar
  6. 6.
    N. Haruki, A. Horibe, T. Suzuki, in 33rd Japan Symposium on Thermophysical Properties, (2012), p. C111Google Scholar
  7. 7.
    H. Arakawa, J. Inst. Electron. Inf. Commun. Eng. 93, 198–203 (2010)Google Scholar
  8. 8.
    T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 126, 12218–12219 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Sarı, C. Alkan, A. Karaipekli, Appl. Energy 87, 1529–1534 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Koschenz, B. Lehmann, Energy Build. 36, 567–578 (2004)CrossRefGoogle Scholar
  11. 11.
    R. Holmen, M. Lamvik, O. Melhus, Int. J. Thermophys. 23, 27–39 (2002)CrossRefGoogle Scholar
  12. 12.
    S.D. Sharma, K. Sagara, Int. J. Green Energy 2, 1–56 (2005)CrossRefGoogle Scholar
  13. 13.
    N. Haruki, A. Horibe, Y. Sano, K. Hachiya, J. Porous Media 18, 997–1008 (2015)CrossRefGoogle Scholar
  14. 14.
    Japan Meterological Agency, http://www.jma.go.jp/jma/indexe.html. Accessed Sep 2014

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations