Advertisement

Reproducibility of the Helium-3 Constant-Volume Gas Thermometry and New Data Down to 1.9 K at NMIJ/AIST

  • Tohru NakanoEmail author
  • Takeshi Shimazaki
  • Osamu Tamura
TEMPMEKO 2016
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

This study confirms reproducibility of the International Temperature Scale of 1990 (ITS-90) realized by interpolation using the constant-volume gas thermometer (CVGT) of National Metrology Institute of Japan (NMIJ)/AIST with \(^{3}\)He as the working gas from 3 K to 24.5561 K by comparing the newly obtained results and those of earlier reports, indicating that the CVGT has retained its capability after renovation undertaken since strong earthquakes struck Japan. The thermodynamic temperature T is also obtained using the single-isotherm fit to four working gas densities (\(127\,\hbox {mol}\cdot \hbox {m}^{-3}\), \(145\,\hbox {mol}\cdot \hbox {m}^{-3}\), \(171\,\hbox {mol}\cdot \hbox {m}^{-3}\) and \(278\,\hbox {mol}\cdot \hbox {m}^{-3})\) down to 1.9 K, using the triple point temperature of Ne as a reference temperature. In this study, only the second virial coefficient is taken into account for the single-isotherm fit. Differences between T and the ITS-90 temperature, \(T-T_{90}\), reported in earlier works down to 3 K were confirmed in this study. At the temperatures below 3 K down to 2.5 K, \(T-T_{90}\) is much smaller than the standard combined uncertainty of thermodynamic temperature measurement. However, \(T- T_{90}\) seems to increase with decreasing temperature below 2.5 K down to 1.9 K, although still within the standard combined uncertainty of thermodynamic temperature measurement. In this study, T is obtained also from the CVGT with a single gas density of \(278\,\hbox {mol}\cdot \hbox {m}^{-3}\) using the triple-point temperature of Ne as a reference temperature by making correction for the deviation from the ideal gas using theoretical values of the second and third virial coefficients down to 2.6 K, which is the lowest temperature of the theoretical values of the third virial coefficient. T values obtained using this method agree well with those obtained from the single-isotherm fit. We also found that the second virial coefficient obtained by the single-isotherm fit to experimental results agrees well with that obtained by the single-isotherm fit to the theoretically expected behavior of \(^{3}\)He gas with the theoretical second and third virial coefficients at four gas densities used in the present work.

Keywords

Constant-volume gas thermometer Helium-3 ITS-90 Low temperature Thermodynamic temperature Virial coefficient 

Notes

Acknowledgements

The authors are grateful to S. Takasu who operated CVGT and discussed its functions. The authors thank Dr. Moldover for his valuable advice related to theoretical results of the virial coefficients of \(^{3}\)He. The authors also thank members of the Thermometry Group and the Frontier Thermometry Group of NMIJ/AIST for valuable discussion.

References

  1. 1.
    H. Preston-Thomas, Metrologia 27, 107, 3 (1990)CrossRefGoogle Scholar
  2. 2.
    C.W. Meyer, M.L. Reilly, in Proceedings of Tempmeko 1996, ed. by P. Marcarino (Levrotto and Bella, Torino, 1997), pp. 39–44Google Scholar
  3. 3.
    H. Sakurai, in Proceedings of Tempmeko 2001, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE, Berlin, 2002), pp. 537–542Google Scholar
  4. 4.
    K.D. Hill, in Proceedings of Tempmeko 2001, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE, Berlin, 2002), pp. 543–548Google Scholar
  5. 5.
    K.H. Kang, D.J. Seong, Y.-G. Kim, K.S. Gam, in Proceedings of Tempmeko 2001, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE, Berlin, 2002), pp. 549–552Google Scholar
  6. 6.
    P.P.M. Steur, I. Peroni, D. Ferri, F. Pavese, in Proceedings of Tempmeko 2004, ed. by D. Zvizdić, et al. (FSB/LPM, Zagreb, 2004), pp. 141–146Google Scholar
  7. 7.
    P.P.M. Steur, F. Pavese, in Temperature: Its Measurement and Control in Science and Industry. Part 1, vol. 6, ed. by J.F. Schooley (AIP, New York, 1992), pp. 121–125Google Scholar
  8. 8.
    O. Tamura, S. Takasu, Y. Murakami, H. Sakurai, in Temperature: Its Measurement and Control in Science and Industry. Part 1, vol. 7, ed. by D.C. Ripple, et al. (AIP, Melville, 2003), pp. 131–136Google Scholar
  9. 9.
    O. Tamura, S. Takasu, H. Sakurai, in Proceedings of Tempmeko 2004, ed. by D. Zvizdić, et al. (FSB/LPM, Zagreb, 2004), pp. 79–84Google Scholar
  10. 10.
    O. Tamura, T. Nakano, T. Shimazaki, S. Takasu, in Temperature: Its Measurement and Control in Science and Industry, part 1, vol. 8, ed. by C.W. Meyer (AIP, Melville, 2013), pp. 118–123Google Scholar
  11. 11.
    O. Tamura, S. Takasu, T. Nakano, H. Sakurai, Int. J. Thermophys. 29, 31 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    O. Tamura, S. Takasu, T. Nakano, H. Sakurai, Int. J. Thermophys. 32, 1366 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H.J. Hoge, F.G. Brickwedde, J. Res. Natl. Bur. Stand. 22, 351 (1939)CrossRefGoogle Scholar
  14. 14.
    J.S. Rogers, R.J. Tainsh, M.S. Anderson, C.A. Swenson, Metrologia 4, 47 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    D.N. Astrov, M.P. Orlova, G.A. Kytin, Metrologia 5, 111 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    K.H. Berry, Metrologia 15, 89 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    P.P.M. Steur, M. Durieux, Metrologia 23, 1 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    D.N. Astrov, L.B. Beliansky, Y.A. Dedikov, S.P. Polunin, A.A. Zakharov, Metrologia 26, 151 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    R.C. Kemp, L.M. Besley, W.R.G. Kemp, Metrologia 23, 61 (1986/1987)Google Scholar
  20. 20.
    W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 2303 (2012)CrossRefGoogle Scholar
  21. 21.
    G. Garberoglio, A.H. Harvey, J. Chem. Phys. 134, 134106 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    K.O. McLean, C.A. Swenson, C.R. Case, J. Low Temp. Phys. 7, 77 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    F.R. Kroeger, C.A. Swenson, J. Appl. Phys. 48, 853 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    H.M. Ledbetter, in Materials at Low Temperature, ed. by R.P. Reed, A.F. Clark (American Society for Metals, Metals Park, 1983), pp. 8–45Google Scholar
  25. 25.
    F. Pavese, G. Moliner, Modern Gas-Based Temperature and Pressure Measurements (Plenum Press, New York, 1992)CrossRefGoogle Scholar
  26. 26.
    O. Tamura, N. Morii, in Proceedings of Tempmeko 2001, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE, Berlin, 2002), pp. 531–536Google Scholar
  27. 27.
    T. Nakano, O. Tamura, H. Sakurai, Int. J. Thermophys. 28, 1893 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    K.D. Hill, T. Nakano, P. Steur, Metrologia 52–1A, 03003 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Mise en pratique for the definition of the kelvin, Section 2. Technical annex for the ITS-90. http://www.bipm.org/utils/en/pdf/MeP_K_Technical_Annex.pdf
  30. 30.
    J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P.P.M. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    T. Shimazaki, K. Toyoda, O. Tamura, Int. J. Thermophys. 32, 2171 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    F.C. Matacotta, G.T. McConville, P.P.M. Steur, M. Durieux, Metrologia 24, 61 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    E. Bich, R. Hellmann, E. Vogel, Mol. Phys. 105, 3035 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Metrology Institute of Japan (NMIJ), AISTTsukubaJapan

Personalised recommendations