Thermophysical Properties of Cerium and Ytterbium via Local Pseudopotential with Mean Field Potential Approach at Extreme Environment
- 117 Downloads
- 1 Citations
Abstract
In the present communication, the ion motional contribution (\(\hbox {F}_{\mathrm{ion}}\)) to the total Helmholtz free energy has been accounted for by using mean field potential (MFP) approximation. The MFP is constructed using the local pseudopotential for divalent ytterbium and trivalent cerium. Further, MFP is used to evaluate static as well as temperature-dependent thermodynamic properties of these metals up to their melting temperature. Computed results are compared with experimental findings as well as results obtained by applying other theoretical methods. Present conjunction scheme with its computational simplicity, physical transparency and transferability of local pseudopotential explains the role of pressure-induced interband transfer of electrons which is crucial in the determination of thermodynamic properties of complex metals like lanthanides.
Keywords
Lanthanides Mean field potential Pseudopotential Thermophysical propertiesNotes
Acknowledgements
Authors are thankful for computational facilities developed using financial assistance provided by Department of Sciences and Technology (DST), New Delhi, through the DST-FIST (Level 1) project (SR/FST/PST-001/2006). Authors are also thankful to Dr. Rajesh Iyer (Head, Department of Physics, St. Xavier’s College, Ahmedabad, Gujarat, India), Mr. K. H. Talati (Lecturer in English, Government Polytechnic, Gandhinagar, Gujarat, India) and Mrs. N. V. Chauhan (Lecturer in English, Government Polytechnic, Gandhinagar, Gujarat, India) for their careful observation and making suggestions and corrections to improve the language and readability of the manuscript.
References
- 1.H. Kurzen, L. Bovigny, C. Bulloni, C. Daul, Chem. Phys. Lett. 574, 129 (2013)ADSCrossRefGoogle Scholar
- 2.B. Johansson, A. Rosengren, Phys. Rev. B 11, 1367 (1975)ADSCrossRefGoogle Scholar
- 3.W.A. Grosshans, W.B. Holzapfel, Phys. Rev. B 45, 5171 (1992)ADSCrossRefGoogle Scholar
- 4.L.L. Sun, J.I. Guang Fu, C. Xiang-Rong, G. Qing-Quan, Chin. Phys. Lett. 26, 017101 (2009)ADSCrossRefGoogle Scholar
- 5.Y.Y. Boguslavskii, V.A. Goncharova, G.G. ll’ina, JETP 80, 248 (1995)ADSGoogle Scholar
- 6.K. Takemura, K. Syassen, J. Phys. F Met. Phys. 15, 543 (1985)ADSCrossRefGoogle Scholar
- 7.W.A. Grosshans, W.B. Holzapfel, J. Phys. C8, 141 (1984)Google Scholar
- 8.J.M. Konings Rudy, O. Benes, J. Phys. Chem. Ref. Data 39, 043102-1 (2010)ADSGoogle Scholar
- 9.J.F. Herbst, J.W. Wikins, Phys. Rev. B 29, 5992 (1984)ADSCrossRefGoogle Scholar
- 10.W.H. Zachariasen, F.H. Ellinger, Acta Cryst. A33, 155 (1977)CrossRefGoogle Scholar
- 11.J.S. Olsen, L. Gerward, U. Benedict, J.P. Itie, Physica B 133, 129 (1985)CrossRefGoogle Scholar
- 12.J.W. Ward, J. Less Common Met. 93, 279 (1983)CrossRefGoogle Scholar
- 13.S.U. Devi, A.K. Singh, Bull. Mater. Sci. 6, 395 (1984)CrossRefGoogle Scholar
- 14.J. Bieder, B. Amadon, Phys. Rev. B 89, 195132 (2014)ADSCrossRefGoogle Scholar
- 15.Y. Wang, L.G. Hector Jr., H. Zhang, S.L. Shang, L.Q. Chen, Z.K. Liu, Phys. Rev. B 78, 104113 (2008)ADSCrossRefGoogle Scholar
- 16.Y. Wang, Phys. Rev. B 61, 863 (2000)Google Scholar
- 17.B. Johansson, W. Luo, S. Li, R. Ahuja, Sci. Rep. 4, 6398 (2014)ADSCrossRefGoogle Scholar
- 18.M. Casadei, X. Ren, P. Rinke, A. Rubio, M. Scheffler, Phys. Rev. B 93, 075153 (2016)ADSCrossRefGoogle Scholar
- 19.C.E. Hu, Z.Y. Zeng, L. Zhang, X.R. Chen, L.C. Cai, Physica B 406, 669 (2011)ADSCrossRefGoogle Scholar
- 20.P. Strange, A. Svane, W.M. Temmerman, Z. Szotek, H. Winter, Nature 399, 756 (1999)ADSCrossRefGoogle Scholar
- 21.K.E. Spear, S. Visco, E.J. Wuchina, E.D. Wachman, The Electrochemical Society Interface, vol. 15 (2006), p. 48. http://www.electrochem.org/dl/interface/spr/spr06/if_spr06.htm
- 22.S.L. Chaplot, R. Mittal, N. Choudhury, Thermophysical Properties of Solids: Experiment and Modeling (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010)CrossRefGoogle Scholar
- 23.N. Dubrovinskaia, L. Dubrovinsky, Advances in High Pressure Technology for Geophysical Applications (Elsevier, Amsterdam, 2005)Google Scholar
- 24.N.K. Bhatt, P.R. Vyas, A.R. Jani, V.B. Gohel, J. Phys. Chem. Solids 66, 797 (2005)ADSCrossRefGoogle Scholar
- 25.N.K. Bhatt, A.R. Jani, P.R. Vyas, V.B. Gohel, Physica B 357, 259 (2005)ADSCrossRefGoogle Scholar
- 26.N.K. Bhatt, P.R. Vyas, A.R. Jani, Philos. Mag. 90, 1599 (2010)ADSCrossRefGoogle Scholar
- 27.Y. Wang, L. Li, Phys. Rev. B 62, 196 (2000)ADSCrossRefGoogle Scholar
- 28.G.L. Krasko, Z.A. Gurskii, ZhETF Pis. Red. 9, 596 (1969)ADSGoogle Scholar
- 29.S.M. Osman, S.M. Mujibur Rahman, Mod. Phys. Lett. B 9, 553 (1995)ADSCrossRefGoogle Scholar
- 30.A.M. Bratkovskii, V.G. Vaks, A.V. Trefilov, Sov. Phys. JETP 59, 1245 (1984)Google Scholar
- 31.J.A. Moriarty, Phys. Rev. B 8, 1338 (1973)ADSCrossRefGoogle Scholar
- 32.X. Sha, R.E. Cohen, Phys. Rev. B. 73, 104303 (2006)ADSCrossRefGoogle Scholar
- 33.J. Hubbard, Proc. Roy. Soc. A243, 336 (1958)ADSGoogle Scholar
- 34.L.J. Sham, Proc. Roy. Soc. A283, 33 (1965)ADSGoogle Scholar
- 35.A. Rosengren, I. Ebbsjo, B. Johansson, Phys. Rev. B 12, 1337 (1975)ADSCrossRefGoogle Scholar
- 36.J.F. Wax, R. Albaki, J.L. Bretonnet, Phys. Rev. B 62, 14818 (2000)ADSCrossRefGoogle Scholar
- 37.J.A. Moriarty, Phys. Rev. B 6, 4445 (1972)ADSCrossRefGoogle Scholar
- 38.C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 1996)zbMATHGoogle Scholar
- 39.
- 40.Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermophysical Properties of Matter: Thermal Expansion, Metallic Elements and alloys, vol. 12 (Plenum, New York, 1975), pp. 53, 382Google Scholar
- 41.K.A. Gschneidner, Solid State Phys. 16, 275 (1964)CrossRefGoogle Scholar
- 42.Y. Wang, Z.K. Liu, L.Q. Chen, J. Appl. Phys. 100, 023533 (2006)ADSCrossRefGoogle Scholar
- 43.Y. Wang, R. Ahuja, M.C. Qian, B. Johansson, J. Phys. Condens. Matter 14, L695 (2002)ADSCrossRefGoogle Scholar
- 44.Y. Wang, R. Ahuja, O. Eriksson, B. Johansson, C. Grimvall, J. Phys. Condens. Matter 14, L453 (2002)ADSCrossRefGoogle Scholar
- 45.C. Cazorla, D. Errandonea, E. Sola, Phys. Rev. B 80, 064105 (2009)ADSCrossRefGoogle Scholar
- 46.C. Cazorla, J. Iniguez, Phys. Rev. B 88, 214430 (2013)ADSCrossRefGoogle Scholar
- 47.C. Cazorla, J. Boronat, Phys. Rev. B 91, 024103 (2015)ADSCrossRefGoogle Scholar
- 48.R. A. Robie, B. S. Hemingway, J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, (U S Geological Survey Bulletin 1452), (United States Government Printing Office, Washington, 1978) p. 44–115Google Scholar
- 49.R.A. MacDonald, W.M. MacDonald, Phys. Rev. B 24, 1715 (1981)ADSCrossRefGoogle Scholar
- 50.H.K. Rai, S.P. Shukla, A.K. Mishra, A.K. Pandey, J. Chem. Pharm. Res. 2, 343 (2010)Google Scholar
- 51.L. Burakovsky, C.W. Greeff, D.L. Preston, Phys. Rev. B 67, 094107–1 (2003)ADSCrossRefGoogle Scholar
- 52.L. Burakovsky, D.L. Preston, Y. Wang, Solid State Commun. 132, 151 (2004)Google Scholar
- 53.C. Bhattacharya, S.V.G. Menon, J. Appl. Phys. 105, 064907–1 (2009)ADSCrossRefGoogle Scholar
- 54.C. Cazorla, D. Alfe, M.J. Gillan, Phys. Rev. B 85, 064113 (2012)ADSCrossRefGoogle Scholar