Hot Plate Method with Two Simultaneous Temperature Measurements for Thermal Characterization of Building Materials

  • Sibiath O. G. OsséniEmail author
  • Clément Ahouannou
  • Emile A. Sanya
  • Yves Jannot


This paper presents a study of the hot plate method with two simultaneous temperature measurements, on the heated and unheated faces of a sample to characterize. The thermal properties of polyvinyl chloride, plaster and laterite were considered to be a representative range of building materials. A 1D quadrupolar model was developed to represent the temperature evolution on the two faces over time. Three-dimensional numerical modeling of a quarter of the testing device with COMSOL software allowed defining the domain of the 1D hypothesis validity. The analysis of estimation possibilities of materials’ thermal characteristics, with the developed method, revealed that thermal effusivity can be accurately estimated by using the temperature of the heated face at the beginning of heating. We showed that the simultaneous use of two temperatures enables the estimation of the thermal conductivity with a greater accuracy and over a shorter time interval than using the temperature of the heated face alone. We also demonstrated that under certain conditions (samples with a high ratio of thickness to width) the method with two temperature measurements enabled the estimation of the thermal effusivity and conductivity, while the method with one temperature allowed only the thermal effusivity to be estimated, because of 3D effects. This conclusion was confirmed by experimental results obtained with a mortar sample.


Accurate estimation Hot plate method Local building materials Thermal characteristics Two temperature measurements 


Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A. Degiovanni, Ed. T.I. Doc. R 2, 850 (1994)Google Scholar
  2. 2.
    J.L. Vivancos, J. Soto, I. Perez, J.V. Ros-Lis, R. Martinez-Manez, Build. Environ. 44, 1047–1052 (2009)CrossRefGoogle Scholar
  3. 3.
    P. Meukam, Y. Jannot, A. Noumowe, T.C. Kofane, Constr. Build. Mater. 18, 437–443 (2004)CrossRefGoogle Scholar
  4. 4.
    L. Qiu, D.W. Tang, X.H. Zheng, G.P. Su, Rev. Sci. Instrum 82, 045106 (2011). doi: 10.1063/1.3579495 ADSCrossRefGoogle Scholar
  5. 5.
    L. Qiu, X.H. Zheng, J. Zhu, G.P. Su, D.W. Tang, Carbon 51, 265–273 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Qiu, X.H. Zheng, J. Zhu, D.W. Tang, Rev. Sci. Instrum 82, 086110 (2011). doi: 10.1063/1.3626937 ADSCrossRefGoogle Scholar
  7. 7.
    L. Qiu, X.H. Zheng, G.P. Su, D.W. Tang, Int. J. Thermophys. 34, 2261–2275 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    B. Hay, J.R. Flitz, J.C. Batsale, Ed. T.I. Doc. R 2, 955 (2004)Google Scholar
  9. 9.
    A. Michot, D.S. Smith, S. Degot, C. Gault, J Eur Ceram Soc 28, 2639–2644 (2008)CrossRefGoogle Scholar
  10. 10.
    J.C. Krapez, Ed. T.I. Doc. R 2, 958 (2004)Google Scholar
  11. 11.
    Y. Jannot, P. Meukam, Meas. Sci. Technol. 15, 1932 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A. Benazzouk, O. Douzane, K. Mezreb, B. Laidoudi, M. Queneudec, Constr. Build. Mater. 22, 573–579 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Saleh, Appl. Therm. Eng. 26, 2184–2191 (2006)Google Scholar
  14. 14.
    F. De Ponte, S. Klarsfeld, Ed. T.I. Doc. R 2, 930 (2002)Google Scholar
  15. 15.
    A.S. Bahrani, Y. Jannot, A. Degiovanni, J. Appl. Phys. 116, 143509 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    H. Li, X. Liu, G. Fang, Energy. Build. 42, 1661–1665 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Jannot, Z. Acemet A. Kanmogne, Meas. Sci. Technol. 17, 69–74 (2006)Google Scholar
  18. 18.
    Y. Jannot, B. Rémy, A. Degiovanni, High Temp-High Press 39(1), 11–31 (2009)Google Scholar
  19. 19.
    S. Raji, Y. Jannot, P. Lagière, J.R. Puiggali, Constr. Build. Mater. 23, 3189–3195 (2009)CrossRefGoogle Scholar
  20. 20.
    H. Bal, Y. Jannot, N. Quenette, A. Chenu, S. Gaye, Constr. Build. Mater. 31, 144–150 (2012)CrossRefGoogle Scholar
  21. 21.
    N. Laaroussi, A. Cherki, M. Garoum, A. Khabbazi, A. Feiz, Conf. Sust. Build. Technol. 42, 337–346 (2013)Google Scholar
  22. 22.
    H. Bal, Y. Jannot, S. Gaye, F. Demeurie, Constr. Build. Mater. 41, 586–593 (2013)CrossRefGoogle Scholar
  23. 23.
    A.L. Edwards, A compilation of thermal property data for computer heat conduction calculations, in Laboratory Lawrence Radiation, vol. 71 (1969)Google Scholar
  24. 24.
    D. Maillet, A. Andre, J-C Batsale, A. Degiovanni, C. Moyne, Thermal Quadrupoles—Solving the Heat Equation through Integral transforms (John Wiley & Sons Ltd, Chichester, 2000), p. 370Google Scholar
  25. 25.
    F.R. De Hoog, Appl. Math. 3(3), 357–366 (1982)Google Scholar
  26. 26.
    A. Boudenne, Thesis of University Paris XII – Val de Marne, France (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sibiath O. G. Osséni
    • 1
    Email author
  • Clément Ahouannou
    • 1
  • Emile A. Sanya
    • 1
  • Yves Jannot
    • 2
    • 3
  1. 1.Laboratory of Applied Energetics and Mechanics (LEMA)Polytechnic School of Abomey-Calavi/University of Abomey-CalaviCotonouBenin
  2. 2.LEMTA, UMR 7563University of LorraineNancyFrance
  3. 3.LEMTA, UMR 7563CNRSNancyFrance

Personalised recommendations