Advertisement

Characterization of a High-Temperature Thermal Conductivity Reference Material

  • J. WuEmail author
  • R. Morrell
  • C. Allen
  • P. Mildeova
  • E. Turzó-András
  • U. Hammerschmidt
  • E. Rafeld
  • A. Blahut
  • J. Hameury
TEMPMEKO 2016
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

The development of thermal conductivity reference materials for high-temperature insulation consists of three stages: provisional assessment of candidate reference materials, detailed assessment of candidate reference material(s) and corresponding inter-laboratory comparisons. This paper describes the detailed characterization of a candidate high-temperature thermal conductivity reference material, a high-density calcium silicate (HDCaSi-N). The selection criteria, assessments of uniformity and stability, the thermal expansion behavior and their effects on the thermal conductivity reference specimens are presented in the paper. The uniformity assessments include the thermal expansion variation in orthogonal orientations and different locations and from different boards, as well as thermal conductivity variation within the batch of the specimens. The dimensional stability assessment in terms of thermal expansion and the short-term stability in terms of thermal conductivity are also presented.

Keywords

High-temperature guarded hot plate Reference material Technical insulation Thermal conductivity Thermal expansion 

List of Symbols

a

\(a=T_\mathrm{m} \) is the mean specimen temperature (K)

b

\(b=\frac{\mathrm{d}T}{\mathrm{d}z}\) is the linear temperature gradient through the thickness of the specimen (K\(\cdot \)m\(^{-1}\))

E

Young’s modulus \((\hbox {kg}\cdot \hbox {m}^{-1}\cdot \hbox {s}^{-2})\)

h

Half the thickness of the specimen (m)

r

Radius (m)

R

Radius of the round disk (m)

\(T_\mathrm{m}\)

Mean specimen temperature (K)

w

Displacement component for z direction (m)

\(\Delta w\)

Estimated bowing of the specimen (m)

xy

The Cartesian coordinates in the plane perpendicular to z direction (m)

z

The Cartesian coordinate along the thickness of the specimen with the origin at the middle point of the thickness (m)

Greek Symbols

\(\alpha \)

Mean thermal expansion coefficient in in-plane direction (\(\hbox {K}^{-1}\))

\(\nu \)

Poisson’s ratio

Notes

Acknowledgements

This work was funded through the European Metrology Research Program (EMRP) Project SIB 52 ‘Thermo’—Metrology for Thermal Protection Materials. The EMRP is jointly funded by the EMRP participating countries within the European Association of National Metrology Institutes (EURAMET) and the European Union.

References

  1. 1.
    J. Wu, R. Morrell, T. Fry, S. Gnaniah, D. Gohil, A. Dawson, J. Hameury, A. Koenen, U. Hammerschmidt, E. Turzó-András. R. Strnad, A. Blahut, in Proceedings at the 32nd International Thermal Conductivity Conference and 20th international Thermal Expansion Symposium, ed. by T.S. Fisher, A. Marconnet (Purdue University Press, West Lafayette, 2015), pp. 142–153Google Scholar
  2. 2.
    W.D. Kingery, Introduction to Ceramics (Wiley, New York, 1959)Google Scholar
  3. 3.
    J. Wu, D. Salmon, N. Lockmuller, C. Stacey, in Proceedings the 30th International Thermal Conductivity Conference and 18th international Thermal Expansion Symposium, ed. by D.S. Gaal, P.S. Gaal (DEStech Publications, Inc., Lancaster, PA, 2010), pp. 529–541Google Scholar
  4. 4.
    J. Wu, R. Morrell, Int. J. Thermophys. 33, 330–341 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    B. Boley, J. Weiner, Theory of Thermal Stresses (Dover Publications, Inc., New York, 1997), pp. 277–279zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Physical LaboratoryTeddingtonUK
  2. 2.Magyar Kereskedelmi Engedélyezési HivatalBudapestHungary
  3. 3.Physikalisch-Technische BundesanstaltBraunschweigGermany
  4. 4.Český Metrologický InstitutBrnoCzech Republic
  5. 5.Laboratoire National de Métrologie et d’EssaisParisFrance

Personalised recommendations