Estimating the Kinematic Viscosity of Petroleum Fractions

  • Hessa A. AlMulla
  • Tareq A. AlbahriEmail author


Kinematic viscosity correlation has been developed for liquid petroleum fractions at 37.78\(\,^{\circ }\hbox {C}\) and \(98.89\,^{\circ }\hbox {C}\) (100 and \(210^{\circ }\hbox {F})\) standard temperatures using a large variety of experimental data. The only required inputs are the specific gravity and the average boiling point temperature. The accuracy of the correlation was compared with several other correlations available in the literature. The proposed correlations proved to be more accurate in predicting the viscosity at 37.78\(\,^{\circ }\hbox {C}\) and \(98.89\,^{\circ }\hbox {C}\) with average absolute deviations of 0.39 and \(0.72\hbox { mm}^{2}/\hbox {s}\), respectively. Another objective was to develop a relation for the variation of viscosity with temperature to predict the viscosity of petroleum fraction at a certain temperature from the knowledge of the viscosity for the same liquid at two other temperatures. The newly developed correlation represents a wide array of temperatures from 20 \(^{\circ }\hbox {C}\) to 150 \(^{\circ }\hbox {C}\) and viscosities from 0.14\(\hbox { mm}^{2}/\hbox {s}\) to 343.64\(\hbox { mm}^{2}/\hbox {s}\). The results have been validated with experimental data consisting of 9558 data points, yielding an overall deviation of \(0.248\hbox { mm}^{2}/\hbox {s}\) and \(\hbox {R}^{2}\) of 0.998. In addition, new formulas were developed to interconvert the viscosity of petroleum fractions from one unit of measure to another based on finding the best fit for a set of experimental data from the literature with \(R^{2}\) as high as 1.0 for many cases. Detailed analysis showed good agreement between the predicted values and the experimental data.


Kinematic viscosity Petroleum fraction Temperature variation Viscosity conversion Viscosity prediction 

Supplementary material

10765_2017_2195_MOESM1_ESM.xls (1.1 mb)
Supplementary material 1 (xls 1077 KB)


  1. 1.
    M.R. Riazi, K.A. Mahdi, M. Alqallaf, J. Chem. Eng. 50, 1 (2005)Google Scholar
  2. 2.
    R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Liquids and Gases, 4th edn. (McGraw-Hill, New York, 1977)Google Scholar
  3. 3.
    R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Liquids and Gases, 5th edn (McGraw-Hill, New York, 1987), p. 9.1Google Scholar
  4. 4.
    A.K. Mehrotra, W.D. Monnery, W.Y. Svrcek, Fluid Phase Equilib. 117, 344 (1996)CrossRefGoogle Scholar
  5. 5.
    J.F. Ely, H.J.M. Hanley, Ind. Eng. Chem. Fundam. 20, 323 (1981)CrossRefGoogle Scholar
  6. 6.
    M.E. Baltatu, Ind. Eng. Chem. Process Des. 21, 192 (1982)CrossRefGoogle Scholar
  7. 7.
    M.B. Amin, R.N. Maddox, Hydrocarb. Process 59, 131 (1980)Google Scholar
  8. 8.
    S.E. Johnson, W.Y. Svrcek, A.K. Mehrotra, Ind. Eng. Chem. Res. 26, 2290 (1987)CrossRefGoogle Scholar
  9. 9.
    K.S. Pedersen, A. Fredenslund, P.L. Christensen, P. Thomassen, Chem. Eng. Sci. 39, 1011 (1984)CrossRefGoogle Scholar
  10. 10.
    K.S. Pedersen, A. Fredenslund, Chem. Eng. Sci. 42, 182 (1987)CrossRefGoogle Scholar
  11. 11.
    A.S. Teja, P. Rice, Ind. Eng. Chem. Fundam. 20, 77 (1981)CrossRefGoogle Scholar
  12. 12.
    A.S. Teja, P.A. Thurner, Chem. Eng. Commun. 49, 69–79 (1986)CrossRefGoogle Scholar
  13. 13.
    k Aasberg-Petersen, K. Knudsen, A. Fredenslund, Fluid Phase Equilib. 70, 293 (1991)CrossRefGoogle Scholar
  14. 14.
    H.M. Moharam, M.A. Fahim, Ind. Eng. Chem. Res. 34, 4140 (1905)CrossRefGoogle Scholar
  15. 15.
    A. Aboul-Seoud, H.M. Moharam, Chem. Eng. J. 72, 253 (1999)CrossRefGoogle Scholar
  16. 16.
    E.N. da C. Andrade, Phil. Mag. 17, 698 (1934)Google Scholar
  17. 17.
    H. Vogel, Physikalische Zeitschrift 22, 645–646 (1921)Google Scholar
  18. 18.
    S.S. Beg, M.B. Amin, I. Hussain, Chem. Eng. J. 38, 123 (1988)CrossRefGoogle Scholar
  19. 19.
    W. Fang, Q. Lei, Fluid Phase Equilib. 166, 125 (1999)CrossRefGoogle Scholar
  20. 20.
    H. Orbey, S.I. Sandler, Can. J. Chem. Eng. 71, 437–446 (1993)CrossRefGoogle Scholar
  21. 21.
    ASTM Annual Book of ASTM Standards, Part 23, (ASTM, Philadelphia, 1981)Google Scholar
  22. 22.
    C. Walther, Erdöl Teer 7, 382 (1931)Google Scholar
  23. 23.
    A.K. Mehrotra, Ind. Eng. Chem. Res. 29, 1574–1578 (1990)CrossRefGoogle Scholar
  24. 24.
    A.K. Mehrotra, Chem. Eng. Res. Des. 73, 87–90 (1995)Google Scholar
  25. 25.
    W.A. Watson, E.F. Nelson, G.B. Murphy, Ind. Eng. Chem. 27, 1460 (1935)CrossRefGoogle Scholar
  26. 26.
    American Petroleum Institute. API Technical Data Book—Petroleum Refining (New York, 1978)Google Scholar
  27. 27.
    M.M. Abbott, T.G. Kaufmann, L. Domash, Can. J. Chem. Eng. 49, 379 (1971)CrossRefGoogle Scholar
  28. 28.
    C.H. Twu, Ind. Eng. Chem. Process Des. Dev. 24, 1287 (1985)CrossRefGoogle Scholar
  29. 29.
    H.M. Moharam, R.A. AI-Mehaideb, M.A. Fahim, Fuel 74, 1776 (1995)CrossRefGoogle Scholar
  30. 30.
    T.E.A. Daubert. API Technical Data Book, 6th edn (American Petroleum Institute (API), Washington, 1997)Google Scholar
  31. 31.
    S.I. Abu-Eishah, Int. J. Thermophys. 20, 1425 (1999)CrossRefGoogle Scholar
  32. 32.
    W.R. Gambill, Chem. Eng., 66, 123 (1959)Google Scholar
  33. 33.
    Oil and Gas Journal Data Book. Edition, (PennWell, Tulsa, 2000)Google Scholar
  34. 34.
    Exxon Mobil. Crude Oils by Region, Exxon Mobil, Accessed on December 25, (2015)
  35. 35.
    D. G. Hyams, CurveExpert Professional 2.3.0, Accessed December 25, (2015)
  36. 36.
    Cole-Parmer Fluid Handling and Analysis, Accessed December 25, (2015)
  37. 37.
    J.H. Gary, G.E. Handwerk, M.J. Kaiser, Petroleum Refining: Technology and Economics, 5th edn (CRC Press, Boca Raton, 2007), p. 26Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Chemical EngineeringKuwait UniversitySafatKuwait
  2. 2.Manufacturing Optimization GroupKuwait National Petroleum Company (KNPC)SafatKuwait

Personalised recommendations