Thermodynamic Temperature Measurement to the Indium Point Based on Radiance Comparison

  • Y. YamaguchiEmail author
  • Y. Yamada
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science


A multi-national project (the EMRP InK project) was completed recently, which successfully determined the thermodynamic temperatures of several of the high-temperature fixed points above the copper point. The National Metrology Institute of Japan contributed to this project with its newly established absolute spectral radiance calibration capability. In the current study, we have extended the range of thermodynamic temperature measurement to below the copper point and measured the thermodynamic temperatures of the indium point (\(T_{90} =\) 429.748 5 \(\hbox {K}\)), tin point (505.078 K), zinc point (692.677 K), aluminum point (933.473 K) and the silver point (1 234.93 K) by radiance comparison against the copper point, with a set of radiation thermometers having center wavelengths ranging from \(0.65\,\upmu \hbox {m}\) to \(1.6\,\upmu \hbox {m}\). The copper-point temperature was measured by the absolute radiation thermometer which was calibrated by radiance method traceable to the electrical substitution cryogenic radiometer. The radiance of the fixed-point blackbodies was measured by standard radiation thermometers whose spectral responsivity and nonlinearity are precisely evaluated, and then the thermodynamic temperatures were determined from radiance ratios to the copper point. The values of \(T-T_{90}\) for the silver-, aluminum-, zinc-, tin- and indium-point cells were determined as −4 mK (\(U = 104\,\hbox {mK}, k=2\)), −99 mK (88 mK), −76 mK (76 mK), −68 mK (163 mK) and −42 mK (279 mK), respectively.


Fixed point Radiation thermometry Thermodynamic temperature 


  1. 1.
    CCT, CCT/SUMM-DE2014. Accessed July 2016
  2. 2.
    J. Fischer, B. Fellmuth, Rep. Prog. Phys. 68, 1043–1094 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    CCT WG4, Estimates of the differences between thermodynamic temperature and the ITS-90. Accessed July 2016
  4. 4.
    J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12–25 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G. Machin, P. Bloembergen, J. Hartmann, M. Sadli, Y. Yamada, Int. J. Thermophys. 28, 1976–1982 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    E.R. Woolliams, K. Anhalt, M. Ballico, P. Bloembergen, F. Bourson, S. Briaudeau, J. Campos, M.G. Cox, D. del Campo, W. Dong, M.R. Dury, V. Gavrilov, I. Grigoryeva, M.L. Hernanz, F. Jahan, B. Khlevnoy, V. Khromchenko, D.H. Lowe, X. Lu, G. Machin, J.M. Mantilla, M.J. Martin, H.C. McEvoy, B. Rougié, M. Sadli, S.G.R. Salim, N. Sasajima, D.R. Taubert, A.D.W. Todd, R. Van den Bossche, E. van der Ham, T. Wang, A. Whittam, B. Wilthan, D.J. Woods, J.T. Woodward, Y. Yamada, Y. Yamaguchi, H.W. Yoon, Z. Yuan, Phil. Trans. R. Soc. A 374, 1–22 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Yamaguchi, Y. Yamada, J. Ishii, Int. J. Thermophys. 36, 1825–1833 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    K. Anhalt, G. Machin, Philos. Trans. R. Soc. A 374, 1–17 (2016)CrossRefGoogle Scholar
  9. 9.
    G.P. Epeldauer, H.W. Yoon, J. Zeng, T.C. Larason, Int. J. Thermophys. 32, 2197–2205 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    N. Noulkow, R.D. Taubert, P. Meindl, J. Hollandt, Int. J. Thermophys. 30, 131–143 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J. Fischer, H.J. Jung, Metrologia 26, 245 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    M. Battuello, M. Florio, F. Girard, Metrologia 47, 231–238 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M. Battuello, F. Girard, M. Florio, Metrologia 46, 26–32 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    F. Sakuma, L. Ma, T. Suzuki, T. Kobayashi, A. Nakanishi, H. Katayama, Proceedings of SICE 2004, FPI-4-2, pp. 72–76 (2004)Google Scholar
  15. 15.
    H.W. Yoon, C.E. Gison, G.P. Eppeldauer, A.W. Smithm, S.W. Brown, K.R. Lykke, Opt. Radiat. Meas. Based Detect. Stand., 29, 239 (2009)Google Scholar
  16. 16.
    F. Sakuma, L. Ma, T. Kobayashi, Int. J. Thermophys. 29, 312–321 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    H.C. McEvoy, M. Sadli, F. Bourson, S. Briaudeau, B. Rougié, Metrologia 50, 559–571 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Metrology Institute of Japan, AISTTsukubaJapan

Personalised recommendations