Advertisement

Molecular Dynamics Study of Surface Anisotropy in \(\hbox {Ag}_{60}\; \hbox {Cu}_{40}\) Alloy at Nanoscale

  • Muhammad ImranEmail author
  • Fayyaz HussainEmail author
  • Muhammad Rashid
  • Farhana Kousar
  • M. Arshad Javid
  • Hafeez UllahEmail author
  • Ejaz Ahmad
  • S. A. Ahmad
Article
  • 235 Downloads

Abstract

In the present study, molecular dynamics simulation has been performed to investigate the anisotropic behavior of free standing \(\hbox {Ag}_{60}\; \hbox {Cu}_{40}\) nanorods. We choose different orientations with various cross sections to study the dynamics of thermal behavior of \(\hbox {Ag}_{60}\; \hbox {Cu}_{40}\) nanorods. The system is modeled using embedded atom method potentials. The radial distribution functions are analyzed to reveal the dynamic evolution of the structural behavior of nanorods with different orientations and sample sizes. The total energy and mean square displacement is also calculated to characterize the melting phenomenon of various samples. The melting temperature of the nanorods is found to be significantly size and orientation dependent, and it increases with the increase in cross-sectional area. The nanorods with low-index crystallographic surfaces such as (110) exhibit lowest melting temperature as compared to compact surfaces (111).

Keywords

Molecular dynamics (MD) simulation surface anisotropy Ag60 Cu40 nanorods 

Notes

Acknowledgements

This work is carried out in the Materials Simulation Research Laboratory (MSRL), Department of Physics Bahauddin Zakariya University Multan Pakistan, 60800.

References

  1. 1.
    A. Latapie, D. Farkas, Scr. Mater. 48, 615 (2003)CrossRefGoogle Scholar
  2. 2.
    S.-J. Zhao, K. Albe, H. Hahn, Scr. Mater. 55, 476 (2006)Google Scholar
  3. 3.
    A.C. Lund, C.A. Schuh, Acta Mater. 53, 3205 (2005)CrossRefGoogle Scholar
  4. 4.
    H. Gleiter, Acta Mater. 48, 29 (2000)CrossRefGoogle Scholar
  5. 5.
    M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 556 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Villain, P. Beauchamp, K.F. Badawi, P. Goudeau, P.O. Renault, Scr. Mater. 50, 1247 (2004)CrossRefGoogle Scholar
  7. 7.
    H.W. Sheng, J.H. He, E. Ma, Phys. Rev. B. 65, 184203 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    B. Pluis, A.W.D. van der Gon, J.W.M. Frenken, J.F. van der Veen, Phys. Rev. Lett. 59, 2678 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    J.W.M. Frenken, J.F.V.D. Veen, Phys. Rev. Lett. 54, 134 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    A.W.D. van der Gon, R.J. Smith, J.M. Gay, D.J. O’Connor, J.F. van der Veen, Surf. Sci. 227, 143 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    A.W.D. van der Gon, H.M. van Pinxteren, J.W.M. Frenken, J.F. van der Veen, Surf. Sci. 244, 259 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    A. Trayanov, E. Tosatti, Phys. Rev. Lett. 59, 2207 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    O. Tomagnini, F. Ercolessi, S. Iarlori, F.D. Di Tolla, E. Tosatti, Phys. Rev. Lett. 76, 1118 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    P. Stoltze, J.K. Nørskov, U. Landman, Phys. Rev. Lett. 61, 443 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    P. Stoltze, J.K. Nørskov, U. Landman, Surf. Sci. 220, L693 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    A. Takeuchi, K. Yubuta, Y. Yokoyama, A. Makino, A. Inoue, Intermet 16, 283 (2008)CrossRefGoogle Scholar
  17. 17.
    O. Gülseren, F. Ercolessi, E. Tosatti, Phys. Rev. B 51, 7377 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    X.W. Wang, G.T. Fei, K. Zheng, Z. Jin, L. De Zhang, Appl. Phys. Lett. 88 (2006)Google Scholar
  19. 19.
    D.Y. Sun, M. Asta, J.J. Hoyt, Phys. Rev. B 69, 024108 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    M.A.C. Altaf Hussain, Chin. J. Phys. 47, 344 (2009)Google Scholar
  21. 21.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    H.H. Wu, D.R. Trinkle, Comput. Mater. Sci. 47, 577 (2009)CrossRefGoogle Scholar
  24. 24.
    M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    A. Nordsieck, Math. Comput. 16, 22 (1962)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Q. Jiang, H.X. Shi, M. Zhao, J. Chem. Phys. 111, 2176–2180 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Zhang, J.C. Li, Q. Jiang, J. Phys. D Appl. Phys. 33, 2653 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsGovt. College University FaisalabadFaisalabadPakistan
  2. 2.Materials Simulation Research Laboratory (MSRL), Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  3. 3.Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan
  4. 4.Institute of Chemical SciencesBahauddin Zakariya UniversityMultanPakistan
  5. 5.Department of Basic Sciences (Physics)University of Engineering and TechnologyTaxilaPakistan
  6. 6.Biophotonics Research Laboratory, Department of PhysicsIslamia University of BahawalpurPunjabPakistan

Personalised recommendations