Evolution of the Inner Liquid–Solid Interface During Metal Freezing

  • A. G. Ivanova
  • V. M. Fuksov
  • S. F. Gerasimov
  • A. I. Pokhodun
TEMPMEKO 2016
  • 118 Downloads
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 12th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

The influence of the inner interface initiation method on the interface shape (formation of the planar interface or the interface with the dendrites growing into the liquid metal) was studied both theoretically and experimentally. The results of numerical simulation of the process of heat removal from the metal, corresponding to different initiation methods, revealed the existence of different species of the inner interface. The interface modification during freezing arises from the inequality of temperature gradients on opposite sides of the interface, i.e., from imbalance of heat fluxes on the interphase boundary (Stefan problem). For indium point, the results of numerical simulation were confirmed experimentally.

Keywords

Fixed points Liquid–solid interface Metal freezing Phase transition 

References

  1. 1.
    D.R. White, R.S. Mason, Int. J. Thermophys. 32, 348 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    M.Y. Abasov, S.F. Gerasimov, A.G. Ivanova, A.I. Pokhodun, O.S. Shulgat, Int. J. Thermophys. 31, 1663 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    A.G. Ivanova, A.U. Ilin, Meas. Tech. 47, 1096 (2005)CrossRefGoogle Scholar
  4. 4.
    E.H. McLaren, in Temperature, Its Measurement and Control in Science and Industry, vol. 3, ed. by F.G. Brickwedde (Reinold Publishing Corporation, New York, 1962), pp. 185–198Google Scholar
  5. 5.
    F. Weinberg, B. Chalmers, Can. J. Phys. 29, 382 (1951)ADSCrossRefGoogle Scholar
  6. 6.
    F. Weinberg, B. Chalmers, Can. J. Phys. 30, 488 (1952)ADSCrossRefGoogle Scholar
  7. 7.
    E.H. McLaren, E.G. Murdock, Can. J. Phys. 46, 369 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    H.K. Lee, K.S. Gam, C. Rhee, Metrologia 28, 413 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    K.D. Baveja, Res. Ind. 30, 489 (1985)Google Scholar
  10. 10.
    J.V. Pearce, P.P.M. Steur, W. Joung, F. Sparasci, G. Strouse, J. Tamba, M. Kalemci, Guide to the Realization of the ITS-90, Metal Fixed Points for Contact Thermometry (Consultative Committee for Thermometry, BIPM, Sèvres Cedex, 2015), http://www.bipm.org/utils/common/pdf/ITS-90/Guide-ITS-90-MetalFixedPoints-2015.pdf
  11. 11.
    A.G. Ivanova, M.Y. Abasov, S.F. Gerasimov, A.I. Pokhodun, in Temperature: Its Measurement and Control in Science and Industry, Proceedings of the Ninth International Temperature Symposium, vol. 8, Los Angeles, 2012, AIP Conference Proceedings 1552, ed. by C. W. Meyer (2013), pp. 243–248. doi: 10.1063/1.4819547
  12. 12.
    D.E. Tyomkin, Crystallization and Phase Transitions (Belarusian Academy of Science, Minsk, 1962), p. 249. [in Russian] Google Scholar
  13. 13.
    A.V. Lykov, Theory of Thermal Conductivity (Vysshaya Shkola, Moscow, 1967). [in Russian] Google Scholar
  14. 14.
    H.S. Carslow, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.D.I. Mendeleev Institute for MetrologySaint PetersburgRussia

Personalised recommendations