Effect of Moisture Content on Thermal Properties of Porous Building Materials

  • Václav Kočí
  • Eva Vejmelková
  • Monika Čáchová
  • Dana Koňáková
  • Martin Keppert
  • Jiří Maděra
  • Robert ČernýEmail author
Part of the following topical collections:
  1. TEMPMEKO 2013: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science


The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.


Building envelopes Climatic conditions Energy balance Moisture content Thermal properties 



This research has been supported by the Czech Science Foundation, under Project No. P105/12/G059.


  1. 1.
    P.C.D. Milly, Water Resour. Res. 18, 489 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    J.R. Philip, D.A. De Vries, Trans. Am. Geophys. Union 38, 222 (1957)ADSCrossRefGoogle Scholar
  3. 3.
    D.A. De Vries, Int. J. Heat Mass Transf. 30, 1343 (1987)CrossRefGoogle Scholar
  4. 4.
    H.M. Künzel, K. Kiessl, Int. J. Heat Mass Transf. 40, 159 (1996)CrossRefGoogle Scholar
  5. 5.
    ČSN 73 0540-3, Thermal Protection of Buildings—Part 3: Design Value Quantities (Czech Office for Standards, Metrology and Testing, Prague, 2005)Google Scholar
  6. 6.
    J. Grunewald, DELPHIN 4.1-Documentation, Theoretical Fundamentals (TU Dresden, Dresden, 2000)Google Scholar
  7. 7.
    C. Feng, H. Janssen, C. Wu, Y. Feng, Q. Meng, Build. Environ. 69, 64 (2013)CrossRefGoogle Scholar
  8. 8.
    Z. Pavlík, L. Fiala, R. Černý, Int. J. Thermophys. 34, 909 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Pavlík, L. Fiala, M. Jerman, E. Vejmelková, M. Pavlíková, M. Keppert, R. Černý, Int. J. Thermophys. 35, 1912 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    C. Feng, H. Janssen, Y. Feng, Q. Meng, Build. Environ. 85, 160 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Jerman, R. Černý, Energ. Build. 53, 39 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Karamanos, S. Hadiarakou, A.M. Papadopoulos, Energ. Build. 40, 1402 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Dell’Isolla, F.R.D. Alfano, G. Giovinco, E. Ianniello, Int. J. Thermophys. 33, 1674 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J.D. Mar, E. Litovsky, J. Kleiman, J. Build. Phys. 32, 9 (2008)CrossRefGoogle Scholar
  15. 15.
    F. Björk, T. Enochsson, Constr. Build. Mater. 23, 2189 (2009)CrossRefGoogle Scholar
  16. 16.
    H. Cagnon, J.E. Aubert, M. Coutand, C. Magniont, Energ. Build. 80, 208 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Hall, D. Allinson, Appl. Therm. Eng. 29, 740 (2009)CrossRefGoogle Scholar
  18. 18.
    A.M. Tang, Y.J. Cui, T.T. Le, Appl. Clay Sci. 41, 181 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Liuzzi, M.R. Hall, P. Stefanizzi, S.P. Cassey, Build. Environ. 61, 82 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Jerman, V. Kočí, J. Maděra, J. Výborný, R. Černý, in 1st Central European Symposium on Building Physics (Technical University of Lodz, Lodz, 2010), p. 39Google Scholar
  21. 21.
    Y. Liu, C. Ma, D. Wang, Y. Wang, J. Liu, Int. J. Thermophys. 37, 56 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    A. Figueiredo, J. Figueira, R. Vicente, R. Maio, Build. Environ. 103, 276 (2016)CrossRefGoogle Scholar
  23. 23.
    Applied Precision, Isomet 2104—Portable Heat Transfer Analyzer (Applied Precision Ltd., 2011). Accessed 25 Oct 2015
  24. 24.
    R. Černý, Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials and Its Application (CTU Prague, Prague, 2013)Google Scholar
  25. 25.
    V. Kočí, J. Maděra, M. Jerman, J. Žumár, D. Koňáková, M. Čáchová, E. Vejmelková, P. Reiterman, R. Černý, Clean Technol. Environ. Policy (2016). doi: 10.1007/s10098-016-1183-2
  26. 26.
    R. Černý, Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials: Assessment and Synthesis of Analytical Data and Construction of the System (CTU Prague, Prague, 2010)Google Scholar
  27. 27.
    J. Kruis, T. Koudelka, T. Krejčí, Math. Comput. Simul. 80, 1578 (2010)CrossRefGoogle Scholar
  28. 28.
    K. \(\check{{\rm D}}\)urana, J. Maděra, R. Černý, in AIP Conference Proceedings, vol. 1648, Art. No UNSP 410002 (2015)Google Scholar
  29. 29.
    ČSN 73 0540-2, Thermal Protection of Buildings—Part 2: Requirements (Czech Office for Standards, Metrology and Testing, Prague, 2011)Google Scholar
  30. 30.
    K. \(\check{{\rm D}}\)urana, J. Kočí, J. Maděra, J. Pokorný, R. Černý, in AIP Conference Proceedings, vol. 1648, Art. No UNSP 410004 (2014)Google Scholar
  31. 31.
    ISO/EIC 98-3:2008, Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurements (Joint Committee for Guides in Metrology, France, 2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Materials Engineering and Chemistry, Faculty of Civil EngineeringCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations