Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

  • J. M. LugoEmail author
  • A. I. Oliva


The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films’ thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.


Nanocalorimetry Specific heat Thermal conductivity Thermal effusivity 



Authors thank to J. E. Corona and Mauricio Romero for their technical support. Special thanks to Dr. A.I. Oliva-Avilés for the revision and suggestions on the manuscript.


  1. 1.
    W. Ma, X. Zhang, Int. J. Heat Mass Transf. 58, 639–651 (2013)CrossRefGoogle Scholar
  2. 2.
    H.G. Craighead, Science 290, 1532–1535 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    B. Feng, Z. Li, X. Zhang, Thin Solid Films 517, 2803–2807 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    H.D. Wang, J.H. Liu, X. Zhang, Z.Y. Guo, K. Takahashi, Heat Mass Transf. 47, 893–898 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    R. Bachmann, F.J. DiSalvo, T.H. Geballe, R.L. Greene, R.E. Howard, C.N. King, H.C. Kirsch, K.N. Lee, R.E. Schwall, H.U. Thomas, R.B. Zubeck, Rev. Sci. Instrum. 43, 205–214 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    P. Nath, K.L. Chopra, Thin Solid Films 18, 29–37 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    C.A. Paddock, G.L. Eesly, J. Appl. Phys. 60, 285–290 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    K. Hatori, N. Taketoshi, T. Baba, H. Ohta, Rev. Sci. Instrum. 76, 114901–114907 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802–808 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    T. Kemp, T.A.S. Srinivas, R. Fetting, W. Ruppel, Rev. Sci. Instrum. 66, 176–181 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    R.T. Swimm, Appl. Phys. Lett. 42, 955–957 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    J. Philip, Rev. Sci. Instrum. 67, 3621–3623 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    P. Charpentier, F. Lepoutre, L. Bertrand, J. Appl. Phys. 53, 608–614 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Cho, J.A. Lim, J.T. Han, H.W. Jang, J.L. Lee, K. Cho, Appl. Phys. Lett. 86, 171906 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    R.D. Maldonado, A.I. Oliva, H.G. Riveros, Surf. Rev. Lett. 13, 557–565 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Lugo, V. Rejon, A.I. Oliva, in in 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE Publication, Piscataway, 2012), pp. 1–5Google Scholar
  17. 17.
    J.M. Lugo, A.I. Oliva, H.G. Riveros, O. Ceh, in in 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (IEEE Publication, Piscataway, 2010), pp. 504–509Google Scholar
  18. 18.
    J.M. Lugo, J.E. Corona, A.I. Oliva, in in 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (IEEE Publication, Piscataway, 2013), pp. 375–379Google Scholar
  19. 19.
  20. 20.
    D. Halliday, R. Resnick, K. Krane, Physics, 4th edn. (Wiley, Hoboken, 1992)Google Scholar
  21. 21.
    A.I. Oliva, J.M. Lugo, Int. J. Thermophys. 37, 35–45 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Lugo, A.I. Oliva, J. Thermophys. Heat Transf. 30, 452–460 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Hartmann, P. Voigt, M. Reichling, J. Appl. Phys. 81, 2966–2972 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    N. Taketoshi, T. Baba, A. Ono, Meas. Sci. Technol. 12, 2064–2073 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    J.S. Jin, J.S. Lee, O. Kwon, Appl. Phys. Lett. 92, 171910–171913 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    F. Kelemen, Thin Solid Films 36, 199–203 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Camacho, A.I. Oliva, Thin Solid Films 515, 1881–1885 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    T. Yamane, Y. Mori, S. Katayama, M. Todoki, J. Appl. Phys. 82, 1153–1156 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Lugo, C. Ayora, V. Rejon, A.I. Oliva, Thin Solid Films 585, 24–30 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    J.M. Lugo, V. Rejon, A.I. Oliva, J. Heat Transf. 137, 051601–0516011 (2015)CrossRefGoogle Scholar
  31. 31.
    S.L. Lai, G. Ramanath, L.H. Allen, P. Infante, Appl. Phys. Lett. 70, 43–45 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    J. Yu, Z. Thang, F. Zhang, H. Ding, Z. Huang, J. Heat Transf. 132, 012403–012406 (2010)CrossRefGoogle Scholar
  33. 33.
    J. Yu, Z.A. Tang, F.T. Zhang, G.F. Wei, L.D. Wang, Chin. Phys. Lett. 22, 2429–2432 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    E. Marin, Phys. Teach. 44, 432–434 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    P.J. McCluskey, J.J. Vlassak, Thin Solid Films 518, 7093–7106 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    J. Martan, N. Semmar, C. Leborgne, E. Le Menn, J. Mathias, Appl. Surf. Sci. 247, 57–63 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departamento de Física AplicadaCentro de Investigación y de Estudios Avanzados del IPN-Unidad MéridaMéridaMéxico

Personalised recommendations