Advertisement

Dry Block Calibrator with Improved Temperature Field and Integrated Fixed-Point Cells

  • Michael HohmannEmail author
  • Sebastian Marin
  • Marc Schalles
  • Thomas Fröhlich
Article
  • 153 Downloads
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 12th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

To reduce uncertainty of calibrations of contact thermometers using dry block calibrators, a concept was developed at Institute for Process Measurement and Sensor Technology of Technische Universität Ilmenau. This concept uses a multi-zone heating, heat flux sensors and a multiple fixed-point cell. The paper shows the concept and its validation on the basis of a dry block calibrator with a working temperature range of \(70\,^{\circ }\hbox {C}\) to \(430\,^{\circ }\hbox {C}\). The experimental results show a stability of \({\pm } 4\,\hbox {mK}\) for the reference temperature and axial temperature differences in the normalization block less than \({\pm }55\,\hbox {mK}\).

Keywords

Dry block calibrator Heat flux sensors Multiple fixed-point cell Multi-zone heating 

Notes

Acknowledgements

The authors would like to thank the German Federal Ministry of Education and Research (BMBF) for founding the project “TempKal” in the VIP-program.

References

  1. 1.
    R. Friedrichs, G. Villacrés, E.C. Weiß, in Sensoren und Messsysteme 2014 - Beiträge der 17. ITG/GMA Fachtagung (VDE Verlag GmbH, Berlin Offenbach, 2014)Google Scholar
  2. 2.
    M. Ballico, C. Freund, Int. J. Thermophys. 32, 2360 (2011). doi: 10.1007/s10765-011-1125-5 ADSCrossRefGoogle Scholar
  3. 3.
    H.-G. Behnke, S. Friederici, S. Rudtsch, Int. J. Thermophys. 31, 1703 (2010). doi: 10.1007/s10765-010-0824-7 ADSCrossRefGoogle Scholar
  4. 4.
    J. Nielsen, J. Domino, M.B. Nielsen, Int. J. Thermophys. 32, 1485 (2011). doi: 10.1007/s10765-011-1003-1 ADSCrossRefGoogle Scholar
  5. 5.
    F. Bernhard, Handbuch der Technischen Temperaturmessung (Springer, Berlin, 2014)CrossRefGoogle Scholar
  6. 6.
    M. Hohmann, S. Marin, M. Schalles, G. Krapf, T. Fröhlich, Int. J. Thermophys. 36, 2085 (2015). doi: 10.1007/s10765-015-1943-y ADSCrossRefGoogle Scholar
  7. 7.
    S. Marin, M. Hohmann, M. Schalles, G. Krapf, T. Fröhlich, Tech. Mess. 82, 402 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Fischer, C. Stoiber, A. Kyarad, H. Lengfellner, Appl. Phys. A Mater. 78, 323 (2004). doi: 10.1007/s00339-003-2326-y ADSCrossRefGoogle Scholar
  9. 9.
    A. Kyarad, Thermoelektrische und Photovoltaische Effekte in Metall-Halbleiter Multilagenstrukturen. Dissertation, Universität Regensburg (2007)Google Scholar
  10. 10.
    T. Fröhlich, M. Hohmann, M. Schalles, J. Thermoelectr. 49 (2015)Google Scholar
  11. 11.
    M. Hohmann, P. Breitkreutz, M. Schalles, T. Fröhlich, Shaping the future by engineering: 58th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau (2014)Google Scholar
  12. 12.
    Fluke Corporation. 917x series metrology well technical guide (2005)Google Scholar
  13. 13.
    Ametek. Jofra Reference Temperature Calibrator RTC-700 datasheet (2016)Google Scholar
  14. 14.
    G. Krapf, M. Schalles, T. Fröhlich, Measurement 44, 385 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for Process Measurement and Sensor TechnologyTechnische Universität IlmenauIlmenauGermany

Personalised recommendations