Advertisement

The Influence of Impurities on the Zinc Fixed Point

  • Steffen RudtschEmail author
  • Antje Aulich
TEMPMEKO 2016
  • 142 Downloads
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

Impurities are considered to be the most significant source of uncertainty for the realization of the International Temperature Scale of 1990 by means of metal fixed points. The determination and further reduction in this uncertainty require a traceable chemical analysis of dissolved impurities in the fixed-point metal and accurate knowledge of the specific temperature change caused by impurities (slope of the liquidus line). We determined the slope of the liquidus line for three binary systems and present results and conclusions from the chemical analysis of zinc with a nominal purity of 7N. For the Fe–Zn system, we determined a liquidus slope of (\(-0.91\pm 0.14\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) from the evaluation of freezing plateaus and (\(-0.76~\pm 0.20\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) from the evaluation of melting plateaus; for the Pb–Zn system, the corresponding results are (\(-0.27~\pm 0.05\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) and (\(-0.26~\pm 0.05\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)). Although for the Sb–Zn system, we determined a liquidus slope of about \(-0.8\) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)), our investigations showed that a correction of the influence of antimony is highly questionable because antimony can be found in zinc in a fully dissolved state or precipitated as an insoluble compound. Iron is the only impurity where a correction of the fixed-point temperature was possible. For the realization of the zinc fixed point at PTB, this correction is between 2 \(\upmu \)K and 16 \(\upmu \)K depending on the batch of zinc used. The influence of the sum of all impurities was estimated by means of the OME method. The resulting uncertainty contribution is between 12 \({\upmu }\hbox {K}\) and 48 \({\upmu }\hbox {K}\).

Keywords

Impurities ITS-90 Zinc fixed point 

References

  1. 1.
    Comité International des Poids et Mesures, Metrologia 5, 35 (1969)CrossRefGoogle Scholar
  2. 2.
    K.D. Hill, S. Rudtsch, Metrologia 42, L1 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    T. Gusarova, Wege zur genauen Charakterisierung hochreiner Materialien mit der Glimmentladungs-Massenspektrometrie (GD-MS), PhD-Thesis, BAM Dissertationsreihe Bd. 55 (2010)Google Scholar
  4. 4.
    T. Gusarova, T. Hofmann, H. Kipphardt, C. Venzago, R. Matschat, U. Panne, J. Anal. At. Spectrom. 25, 314 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Gusarova, B. Methven, H. Kipphardt, R. Sturgeon, R. Matschat, U. Panne, Spectrochim. Acta Part B: At. Spectrosc. 66, 847 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    S. Rudtsch, M. Fahr, T. Gusarova, J. Fischer, H. Kiphardt, R. Matschat, Int. J. Thermophys. 29, 139 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Rudtsch, T. Gusarova, A. Aulich, M. Fahr, J. Fischer, H. Kipphardt, R. Matschat, U. Panne, Int. J. Thermophys. 32, 293 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J. Vogl, H. Kipphardt, M.R.A. Torres, J.V.L. Manzano, J.M. Rodrigues, R.C. de Sena, Y.H. Yim, S.W. Heo, T. Zhou, G.C. Turk, M. Winchester, L.L. Yu, T. Miura, B. Methven, R. Sturgeon, R. Jährling, O. Rienitz, M. Tunç, S. Zühtü, Can, Metrologia 51, 08008 (2014)Google Scholar
  9. 9.
    Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the intercomparison CCQM-P149, Pilot study of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM), final report and publication in progress, Personal communication with J. Vogl (BAM)Google Scholar
  10. 10.
    B. Fellmuth, K.D. Hill, P. Bloembergen, M. de Groot, Y. Hermier, M. Matveyev, A. Pokhodun, D. Ripple, P.P.M. Steur, Methodologies for the Estimation of Uncertainties and the Correction of Fixed-Point Temperatures Attributable to the Influence of Chemical Impurities. Working Document of the Consultative Committee on Thermometry CCT/05-08 (2005). http://www.bipm.org/cc/CCT/Allowed/23/CCT_05_08_rev.pdf is also cited in: Pearce, J.V., Sun, J.P., Zhang, J.T. et al. Int J Thermophys (2017) 38: 4
  11. 11.
    B. Fellmuth, K.D. Hill, J.V. Pearce, A. Peruzzi, P.P.M. Steur, J. Zhang, Guide to the Realization of the ITS-90 (Influence of Impurities, Consultative Committee for Thermometry, Fixed Points), (2015)Google Scholar
  12. 12.
    M. Fahr, S. Rudtsch, Metrologia 46, 423 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak L (eds.), Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, OH, 1990)Google Scholar
  14. 14.
    R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson, S.M. Martin, CALPHAD 26, 229 (2002)CrossRefGoogle Scholar
  15. 15.
    J.V. Pearce, Int. J. Thermophys. 35, 628 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    B. Sundman, B. Jansson, J.-O. Andersson, CALPHAD 9, 153 (1985)CrossRefGoogle Scholar
  17. 17.
    G. Eriksson, K. Hack, Metall. Mater. Trans. 21B, 1013 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    H.L. Lukas, J. Weiss, E-Th Henig, CALPHAD 6, 229 (1982)CrossRefGoogle Scholar
  19. 19.
    H.L. Lukas, E-Th Henig, B. Zimmermann, CALPHAD 1, 225 (1977)CrossRefGoogle Scholar
  20. 20.
    J.V. Pearce, J.A. Gisby, P.P.M. Steur, Metrologia 53, 1101 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M. Fahr, S. Rudtsch, A. Aulich, Int. J. Thermophys. 32, 2239 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M. Fahr, S. Rudtsch, A.-K. Gerlitzke, Int. J. Thermophys. 32, 2269 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    G. Krapf, H. Mammen, G. Blumröder, T. Fröhlich, Meas. Sci. Technol. 23, 074022 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J. Ancsin, Metrologia 44, 303 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    J. Sun, S. Rudtsch, J. Zhang, X. Wu, X. Deng, T. Zhou, Int. J. Thermophys. 35, 1134 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S. Rudtsch, A. Aulich, C. Monte, AIP Conf. Proc. 1552, 265 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    J.V. Widiatmo, M. Sakai, K. Satou, K. Yamazawa, J. Tamba, M. Arai, Int. J. Thermophys. 32, 309 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BerlinGermany

Personalised recommendations