Advertisement

Measurements of the Viscosity of Molten Lithium Nitrate by the Oscillating-cup Method

  • V. M. B. NunesEmail author
  • M. J. V. Lourenço
  • F. J. V. Santos
  • C. A. Nieto de Castro
Article

Abstract

New experimental data for the viscosity of molten lithium nitrate from its melting point up to about 700 K are reported. The measurements were taken, for the first time, with an oscillating-cup viscometer with an estimated uncertainty of 3 %. The obtained data were compared with previous works. It was concluded that there are still large discrepancies between different sets of data. Our data follow the Arrhenius behavior with an activation energy for viscous flow of \(E_{\eta } \hbox {= 19.3}\) \(\hbox {kJ}{\cdot }\hbox {mol}^{-1}\), slightly higher than previous recommendations.

Keywords

Heat transfer fluids Ionic liquids Molten alkali nitrate Viscosity 

References

  1. 1.
    J.G. Cordaro, N.C. Rubin, R.W. Bradshaw, J. Sol. Energy Eng. 133, 011014 (2011)CrossRefGoogle Scholar
  2. 2.
    R.W. Bradshaw, Sandia Report, SAND2010-1129 (2010)Google Scholar
  3. 3.
    T. Wang, D. Mantha, R.G. Reddy, Appl. Energy 102, 1422 (2013)CrossRefGoogle Scholar
  4. 4.
    A.G. Fernandez, S. Ushak, H. Galleguillos, F.J. Pérez, Appl. Energy 119, 131 (2014)CrossRefGoogle Scholar
  5. 5.
    V.M.B. Nunes, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, Int. J. Thermophys. 27, 1638 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    V.M.B. Nunes, M.J.V. Lourenço, F.J.V. Santos, C.A.Nieto de Castro, Viscosity of molten lithium nitrate in Euchem Conference on Molten Salts and ionic Liquids, Hammamet, Tunísia (2006)Google Scholar
  7. 7.
    C.A. Nieto de Castro, F.J.V. Santos, Chim. Oggi Chem. Today 25, 20 (2007)Google Scholar
  8. 8.
    G.J. Janz, F.W. Dampier, G.R. Lakshiminarayanan, P.K. Lorenz, R.P.T. Tomkins, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 15, 25 (1968)Google Scholar
  9. 9.
    R.S. Dantuma, Z. Anorg. Chem. 175, 1 (1928)CrossRefGoogle Scholar
  10. 10.
    G.J. Janz, S.W. Lurie, G.L. Gardner, J. Chem. Eng. Data 23, 14 (1978)CrossRefGoogle Scholar
  11. 11.
    G.J. Janz, NIST Standard Reference Database, vol 27, (Gaithersburg, MD, 1991)Google Scholar
  12. 12.
    I.G. Murgulescu, S. Zuca, Electrochim. Acta 11, 1383 (1966)CrossRefGoogle Scholar
  13. 13.
    S. Zuca, Rev. Roum. Chim. 15, 1277 (1970)Google Scholar
  14. 14.
    P.I. Protsenko, O.N. Razumovskaya, Zhur. Prikl. Khim. 38, 2355 (1965)Google Scholar
  15. 15.
    V.M.B. Nunes, F.J.V. Santos, Nieto de Castro, C. A. Int. J. Thermophys. 19, 427 (1998)CrossRefGoogle Scholar
  16. 16.
    K.H. Stern, J. Phys. Chem. Ref. Data 1, 747 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    I. Brovkina, A. Farmakovskaya, V. Khokhlov, Electrochem. Molten Solid Electrolytes 21, 4 (1974)Google Scholar
  18. 18.
    V.G. Smotrakov, N.P. Popovskaya, V.A. Tereshenko, Zhur. Prikl. Khim 45, 2627 (1972)Google Scholar
  19. 19.
    V.M.B. Nunes, M.J.V. Lourenço, P. Panandiker, F.J.V. Santos, C.A. Nieto de Castro, in Proceedings of the 7th International Symposium on Molten Salts Chemistry and Technology, ed. by P. Taxil et al., vol. 2 (Toulouse, France, 2005), pp. 783–786Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Escola Superior de TecnologiaInstituto Politécnico de TomarTomarPortugal
  2. 2.Departamento de Química e Bioquímica Faculdade de Ciências daUniversidade de LisboaLisboaPortugal
  3. 3.Centro de Química Estrutural, Faculdade de Ciências daUniversidade de LisboaLisboaPortugal

Personalised recommendations