Advertisement

Small Multiple Fixed-Point Cell as Calibration Reference for a Dry Block Calibrator

  • S. MarinEmail author
  • M. Hohmann
  • T. Fröhlich
TEMPMEKO 2016
  • 166 Downloads
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

A small multiple fixed-point cell (SMFPC) was designed to be used as in situ calibration reference of the internal temperature sensor of a dry block calibrator, which would allow its traceable calibration to the International Temperature Scale of 1990 (ITS-90) in the operating range of the block calibrator from \(70\,^{\circ }\hbox {C}\) to \(430\,^{\circ }\hbox {C}\). The ITS-90 knows in this temperature range, three fixed-point materials (FPM) indium, tin and zinc, with their respective fixed-point temperatures (\(\vartheta _\mathrm {FP}\)), In (\(\vartheta _\mathrm {FP}\,{=}\,156.5985\,^{\circ }\hbox {C}\)), Sn (\(\vartheta _\mathrm {FP}\,{=}\,231.928\,^{\circ }\hbox {C}\)) and Zn (\(\vartheta _\mathrm {FP}\,{=}\,419.527\,^{\circ }\hbox {C}\)). All of these FPM are contained in the SMFPC in a separate chamber, respectively. This paper shows the result of temperature measurements carried out in the cell within a period of 16 months. The test setup used here has thermal properties similar to the dry block calibrator. The aim was to verify the metrological properties and functionality of the SMFPC for the proposed application.

Keywords

Dry block calibrator Fixed-point cell In-situ calibration Traceable calibration 

Notes

Acknowledgements

The authors thank the German Federal Ministry of Education and Research (BMBF) for founding the project “TempKal” in the VIP-Program.

References

  1. 1.
    F. Bernhard, in Handbuch der Technischen Temperaturmessung (Springer, Heidelberg, 2014). doi: 10.1007/978-3-642-24506-0
  2. 2.
    M. Hohmann, S. Marin, M. Schalles, G. Krapf, T. Fröhlich, Int. J. Thermophys. 36(8), 2085 (2015). doi: 10.1007/s10765-015-1943-y ADSCrossRefGoogle Scholar
  3. 3.
    M. Schalles, F. Bernhard, Int. J. Thermophys. 28(6), 2049 (2007). doi: 10.1007/s10765-007-0277-9 ADSCrossRefGoogle Scholar
  4. 4.
    F. Edler, P. Ederer, Int. J. Thermophys. 35(6), 1180 (2014). doi: 10.1007/s10765-014-1704-3 ADSCrossRefGoogle Scholar
  5. 5.
    O. Ongrai, J.V. Pearce, G. Machin, U. Norranim, Int. J. Thermophys. 36(2), 423 (2015). doi: 10.1007/s10765-014-1809-8 ADSCrossRefGoogle Scholar
  6. 6.
    Y.G. Kim, I. Yang, W. Joung, Int. J. Thermophys. 37(1), 1 (2016). doi: 10.1007/s10765-015-2020-2 ADSCrossRefGoogle Scholar
  7. 7.
    S. Marin, M. Hohmann, M. Schalles, G. Krapf, T. Fröhlich, Shaping the future by engineering: 58th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau (2014)Google Scholar
  8. 8.
    M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, W.A. Wakeham, J. Phys. Chem. Ref. Data 41(3) (2012). doi: 10.1063/1.4729873
  9. 9.
    M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R. Michael Banish, I. Egry, J. Wu, E. Kaschnitz, W.A. Wakeham, J. Phys. Chem. Ref. Data 39(3) (2010). doi: 10.1063/1.3467496
  10. 10.
    T. Gancarz, W. Gasior, H. Henein, Int. J. Thermophys. 34(2), 250 (2013). doi: 10.1007/s10765-013-1407-1 ADSCrossRefGoogle Scholar
  11. 11.
    D.J. Steinberg, Metall. Mater. Trans. B 5(6), 1341 (1974). doi: 10.1007/BF02646618 ADSCrossRefGoogle Scholar
  12. 12.
    G. Krapf, M. Schalles, T. Fröhlich, Measurement 44(2), 385 (2011). doi: 10.1016/j.measurement.2010.10.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut für Prozessmess- und SensortechnikTechnische Universität IlmenauIlmenauGermany

Personalised recommendations