Multiharmonics Method Characterizing In-Plane Thermal Conductivity and TBR of Semiconductor Nanofilm on Substrate: Theoretical Analysis

  • Zhaoliang WangEmail author
  • Zhe Xu
  • Xiaoli Du
  • Dawei Tang
Asian Thermophysical Properties Conference Paper
Part of the following topical collections:
  1. Asian Thermophysical Properties Conference Papers


The in-plane thermal conductivity of semiconductor nanofilm is difficult to be tested due to suspension problem. The thermal boundary resistance (TBR) plays a key role in semiconductor nanoscale structures and nanoscale thermal experiments. By applying alternating current and direct current currents simultaneously on the semiconducting nanofilm on highly insulated substrate, multiharmonics including \(1\upomega \), \(2\upomega \) and \(3\upomega \) signals originating from the self-heating of nanofilm are measured. The thermal boundary resistance is introduced into the heat diffusion equation in in-plane direction. The expression of temperature oscillation and theoretical analysis of heat transport process show that the in-plane thermal conductivity and TBR can be decoupled from the multiharmonics in frequency domain. Thermal analysis justifies the multiharmonics method according to the effect of in-plane thermal conductivity, TBR between nanofilm and insulated substrate, resistance coefficient of semiconductor nanofilm on temperature oscillation at low frequency. Results show the multiharmonic method sensitivity variations depending on the TBR, the in-plane thermal conductivity, and the electric current frequency.


In-plane thermal conductivity Multiharmonics Semiconductor nanofilm Thermal boundary resistance 



We acknowledge funding supports from National Natural Science Foundation of China (Nos. 51176205, U1262112).


  1. 1.
    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    W.F. Bu, D.W. Tang, Z.L. Wang, X.H. Zheng, G.H. Cheng, Thin Solid Films 516, 8359 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    D.G. Cahill, M. Katiyar, J.R. Abelson, Phys. Rev. B 50, 6077 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, J. Vac. Sci. Technol. A 7, 1259 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    T. Yamane, N. Nagai, S. Katayama, M. Todoki, J. Appl. Phys. 91, 9772 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Quintana, J.R. Viejo, J. Appl. Phys. 104, 074903 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Son, S.K. Pal, T. Borca- Tasciuc, P.M. Ajayan, R.W. Siegel, J. Appl. Phys 103, 024911 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Z.L. Wang, D.W. Tang, X.B. Li, X.H. Zheng, W.G. Zhang, L.X. Zheng, Y.T. Zhu, A.Z. Jin, H.F. Yang, C.Z. Gu, Appl. Phys. Lett. 91, 123119 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    F. Depasse, P. Grossel, N. Trannoy, Superlattices Microstruct. 35, 269 (2004)Google Scholar
  10. 10.
    L. Lu, W. Yi, D.L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    G. Chen, Nanoscale Energy Transport and Conversion (Oxford University Press, New York, 2005)Google Scholar
  12. 12.
    E.T. Swartz, R.O. Pohl, Appl. Phys. Lett. 51, 2200 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Energy and Power Engineering DepartmentChina University of PetroleumTsingtaoChina
  2. 2.Institute of Energy and Power EngineeringDalian University of TechnologyDalianChina

Personalised recommendations